Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.8 Printed on 07 October 2020 at 14:40:05

Project Information:

Assessed By: John Ashe (STRO031268) **Building Type:** Flat

Dwelling Details:

NEW DWELLING DESIGN STAGE

Total Floor Area: 78.72m²

Site Reference : COPPETTS WOOD, London Plot Reference: Unit 7 - COPPETTS WOOD, Lor

Address:

Client Details:

Name:

Address:

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1a TER and DER

Fuel for main heating system: Mains gas (c), Mains gas (c)

Fuel factor: 1.00 (mains gas (c), mains gas (c))

15.23 kg/m² Target Carbon Dioxide Emission Rate (TER)

Dwelling Carbon Dioxide Emission Rate (DER) 8.99 kg/m² OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) 36.2 kWh/m²

Dwelling Fabric Energy Efficiency (DFEE) 35.5 kWh/m²

OK

2 Fabric U-values

Element	Average	Highest	
External wall	0.15 (max. 0.30)	0.15 (max. 0.70)	OK
Floor	0.13 (max. 0.25)	0.13 (max. 0.70)	OK
Roof	(no roof)		
Openings	0.90 (max. 2.00)	0.90 (max. 3.30)	OK

2a Thermal bridging

Thermal bridging calculated using user-specified y-value of 0.15

3 Air permeability

Air permeability at 50 pascals 5.00 (design value)

OK Maximum 10.0

4 Heating efficiency

Main Heating system: Community heating schemes - mains gas

Community boilers

Secondary heating system: None

5 Cylinder insulation

Hot water Storage: No cylinder

6 Controls

Space heating controls Charging system linked to use of community heating,

programmer and at least two room thermostats

Hot water controls: No cylinder thermostat

No cylinder

OK

Regulations Compliance Report

7 Low energy lights		
Percentage of fixed lights with low-energy fittings	100.0%	
Minimum	75.0%	OK
3 Mechanical ventilation		
Continuous supply and extract system		
Specific fan power:	0.9	
Maximum	1.5	OK
MVHR efficiency:	91%	
Minimum	70%	OK
9 Summertime temperature		
Overheating risk (Thames valley):	Medium	ок
ased on:		
Overshading:	Average or unknown	
Windows facing: South	12.15m²	
Ventilation rate:	4.00	
10 Key features		
Windows U-value	0.9 W/m²K	

Community heating, heat from boilers - mains gas

Photovoltaic array

Thermal Bridge Report

Property Details: Unit 7 - COPPETTS WOOD, London

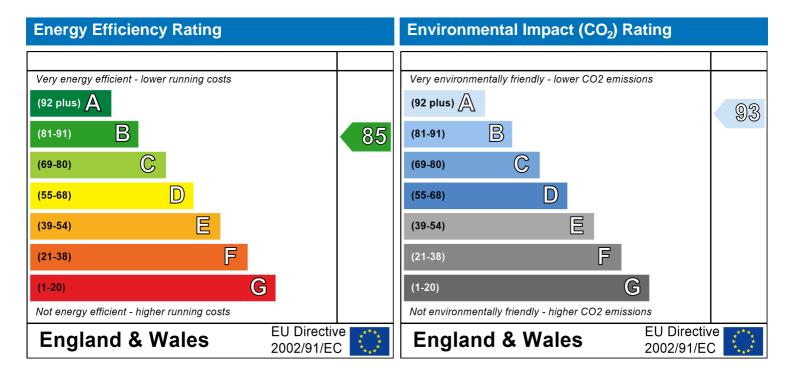
Address:

Located in: England Region: Thames valley

Thermal bridges:

Thermal bridges: No information on thermal bridging (y=0.15) (y=0.15)

Predicted Energy Assessment



Dwelling type: Date of assessment: Produced by: Total floor area: Mid floor Flat 30 September 2020 John Ashe

78.72 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

Developer Confirmation Report

Property Details: Unit 7 - COPPETTS WOOD, London

Address:

Located in: England Region: Thames valley

UPRN:

Date of assessment: 30 September 2020 Date of certificate: 07 October 2020

Assessment type: New dwelling design stage

Transaction type: New dwelling

Thermal Mass Parameter: Indicative Value Low

Comments:

Property description:

Dwelling type: Flat

Detachment:

Year Completed: 2020 Front of dwelling faces: North

Comments:

Opening types:

Name: Type: Frame Factor: g-value: U-Value: Area: Rear Windows Windows 0.7 0.63 0.9 12.15

Overshading: Average or unknown

Comments:

Opaque Elements:

Type: U-Value: Kappa:

External Elements

Walls
0.15 Please provide the U-Value calculation to justify the U-Value entered into the assessment.

N/A
Exposed Floor
0.13 Please provide the U-Value calculation to justify the U-Value entered into the assessment.

N/A

Internal Elements (Area, Kappa)
Party Elements (Area, Kappa)

Thermal bridges:

Developer Confirmation Report

Thermal bridges: Comments:	No information on thermal bridging ($y=0.15$) ($y=0.15$)
If specific construction details have	been adopted then please provide the associated checklists; signed and dated.
Ventilation:	
Pressure test: Ventilation:	Yes (As designed) Balanced with heat recovery Number of wet rooms: Kitchen + 2 Ductwork: Insulation, rigid Approved Installation Scheme: True
Pressure test: Comments:	5
Please provide the pressure test ce	rtificate, or certificates if the result is based on an average; signed and dated.
Main heating system:	
Main heating system:	Community heating schemes Heat source: Community boilers heat from boilers – mains gas, heat fraction 0.4, efficiency 89 Heat source: Community boilers heat from boilers – mains gas, heat fraction 0.4, efficiency 89 Piping>=1991, pre-insulated, low temp, variable flow
Comments:	
Main heating Control:	
Main heating Control:	Charging system linked to use of community heating, programmer and at least two room thermostats
Comments:	
Carandamahashin masakan	
Secondary heating system: Secondary heating system: Comments:	None

Developer Confirmation Report

Water heating:	
Water heating: Comments:	No hot water cylinder
	Solar panel: False
Others:	Solai pariei. i aise
Electricity tariff: Low energy lights: Terrain type: Wind turbine: Photovoltaics: Comments: Please provide the MCS certificate or include any calculations to support a	Standard Tariff 100% Low rise urban / suburban No Photovoltaic 1 Installed Peak power: 0.89 Tilt of collector: 30° Overshading: None or very little Collector Orientation: South data sheet equivalent confirming the size of the array on the roof. This should proportioned amount included in the assessment.
Declaration:	
I confirm that the property has been bu Signed:	uilt to the above specification.
 Nate·	

User Details: **Assessor Name:** John Ashe Stroma Number: STRO031268 Stroma FSAP 2012 **Software Version: Software Name:** Version: 1.0.5.8 Property Address: Unit 7 - COPPETTS WOOD, London Address: 1. Overall dwelling dimensions Area(m²) Av. Height(m) Volume(m³) Ground floor 78.72 (1a) x (2a) = 209.4 (3a) 2.66 Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+....(1n)(4)78.72 Dwelling volume (3a)+(3b)+(3c)+(3d)+(3e)+....(3n) =209.4 (5) total m³ per hour main secondary other heating heating x 40 = Number of chimneys (6a) 0 0 x 20 =Number of open flues 0 O O 0 0 (6b) Number of intermittent fans x 10 =(7a) 0 0 x 10 =Number of passive vents (7b) 0 0 x 40 =Number of flueless gas fires (7c)Air changes per hour Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = \div (5) = (8) If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) Number of storeys in the dwelling (ns) (9) O Additional infiltration (10)[(9)-1]x0.1 =0 Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction (11)0 if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 0 (12) If no draught lobby, enter 0.05, else enter 0 (13)O Percentage of windows and doors draught stripped (14)0 Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ 0 (15)Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) =O (16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area (17)5 If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise (18) = (16)0.25 (18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides sheltered (19)0 $(20) = 1 - [0.075 \times (19)] =$ Shelter factor (20)1 $(21) = (18) \times (20) =$ Infiltration rate incorporating shelter factor 0.25 (21)Infiltration rate modified for monthly wind speed Jan Feb Jul Sep Mar Apr Mav Jun Aug Oct Nov Dec Monthly average wind speed from Table 7 (22)m =5.1 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7 Wind Factor $(22a)m = (22)m \div 4$ (22a)m 1.27 1.25 1.23 1.08 0.95 0.95 0.92 1 1.08 1.12 1.1 1.18

Adjusted infiltr	ation rat	e (allowi	ing for sh	nelter an	d wind s	speed) =	(21a) x	(22a)m					
0.32	0.31	0.31	0.28	0.27	0.24	0.24	0.23	0.25	0.27	0.28	0.29		
Calculate effe		_	rate for t	he appli	cable ca	se	-				•		— ,,,,
If mechanical If exhaust air h			andiv N. (2	12h) - (22a	a) Em. (aguatian (I	VEVV otho	nuico (22h	·) - (22a)			0.5	(23
If balanced with		0		, ,	,	. ,	,, .	`	i) = (23a)			0.5	(23
		•	•	ŭ		`		,	Ola)	201.)	4 (00)	77.35	(23
a) If balance				i		, ` ` 	- ´ ` -	ŕ	, 		- ` ´	i ÷ 100] I	(24
(24a)m= 0.43	0.43	0.42	0.39	0.38	0.35	0.35	0.34	0.36	0.38	0.39	0.41		(24
b) If balance				ı		, 	, 	ŕ	<u> </u>		Ι .	1	(24
(24b)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24
c) If whole h				•	•				E (22h	١			
(24c)m= 0	0.5 x	0	0	0 = (230)	0	0	C) = (221)	0	.5 × (23b	0	0]	(24
` ′										0	1 0		(24
d) If natural if (22b)r	ventilation			•					0.51				
(24d)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(24
Effective air	change	rate - er	ı nter (24a) or (24t	o) or (24	c) or (24	.d) in box	(25)	<u>. </u>			I	
(25)m= 0.43	0.43	0.42	0.39	0.38	0.35	0.35	0.34	0.36	0.38	0.39	0.41]	(25
()							1				1 -		`
3. Heat losse	s and he	eat loss p	paramet	er:									
ELEMENT	Gros area		Openin m		Net Ar A ,r		U-valı W/m2		A X U (W/l	<)	k-value kJ/m²-l		X k J/K
Windows					12.15	₅ χ1	/[1/(0.9)+	0.04] =	10.56				(27
Floor					78.72	2 X	0.13	=	10.2336	5 [(28
Walls	27.3	34	12.1	5	15.19) x	0.15	=	2.28	= [\neg	(29
Total area of e	elements	, m²			106.0	6							 (31
* for windows and	l roof wind	ows, use ϵ	effective wi	ndow U-va	alue calcul	ated using	g formula 1	/[(1/U-valu	ue)+0.04] a	s given in	paragraph	1 3.2	
** include the area				ls and par	titions								
Fabric heat los	3s, W/K =	= S (A x	U)				(26)(30)	+ (32) =				23.07	(33
Heat capacity	Cm = S($(A \times k)$						((28).	(30) + (32	2) + (32a).	(32e) =	9570.6	(34
Thermal mass	parame	ter (TMF	P = Cm -	- TFA) ir	n kJ/m²K			Indica	tive Value:	Low		100	(35
For design assess				construct	ion are no	t known pr	ecisely the	indicative	e values of	TMP in Ta	able 1f		
can be used inste Thormal bridge				uoina An	nondiy l	/							
Thermal bridger if details of thermaler	,	,		• .	•	N.						15.91	(36
Total fabric he		are not kin	10W11 (30) -	- 0.00 X (3	11)			(33) +	(36) =			38.98	(37
Ventilation hea		alculated	d monthly	V					= 0.33 × (25)m x (5))	00.00	(
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	1	
(38)m= 29.85	29.42	28.99	26.83	26.4	24.24	24.24	23.81	25.1	26.4	27.26	28.12		(38
			L		·· _ ·	·· - ·	L	<u> </u>	<u>. </u>			J	(
Heat transfer of	1		65.0	GE 07	62.04	62.04	60.70		= (37) + (37)		67.4	1	
200,00	68.4	67.96	65.8	65.37	63.21	63.21	62.78	64.08	65.37	66.24	67.1	65.7	(39
(39)m= 68.83												າ ກາ/	
` '	meter (F	HLP). W/	/m²K						_	Sum(39) ₁ (4)	12 / 12-	00.7	(00
(39)m= 68.83 Heat loss para (40)m= 0.87	ameter (H	HLP), W/	/m²K 0.84	0.83	0.8	0.8	0.8		= (39)m ÷		0.85]	(00

Number of days in month (Table 1a)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	iter heat	ing ener	gy requi	rement:								kWh/ye	ear:	
if TF	ed occu A > 13.9 A £ 13.9	0, N = 1		[1 - exp	(-0.0003	349 x (TF	FA -13.9))2)] + 0.0	0013 x (T	ΓFA -13.		44		(42)
Annual average hot water usage in litres per day Vd,average = (25 x N) + 36 Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold)												(43)		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate			day for ea	ach month									ı	
(44)m=	101.32	97.63	93.95	90.26	86.58	82.89	82.89	86.58	90.26	93.95	97.63	101.32		7(44)
Energy o	content of	hot water	used - cal	culated mo	onthly = 4.	190 x Vd,n	n x nm x D	OTm / 3600			m(44) ₁₁₂ = ables 1b, 1		1105.27	(44)
(45)m=	150.25	131.41	135.6	118.22	113.44	97.89	90.71	104.09	105.33	122.75	133.99	145.51		
If instant	taneous w	ater heati	ng at point	of use (no	hot water	storage)	enter () in	hoves (46		Total = Su	m(45) ₁₁₂ =	-	1449.18	(45)
i	· ·			17.73					` ′	10.44	20.4	21.83	1	(46)
(46)m= Water	22.54 storage	19.71 loss:	20.34	17.73	17.02	14.68	13.61	15.61	15.8	18.41	20.1	21.03		(40)
Storag	e volum	e (litres)	includin	ig any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
If community heating and no tank in dwelling, enter 110 litres in (47) Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47) Water storage loss:														
,			eclared l		or is kno	wn (kWh	n/day):					0		(48)
•			m Table					(40) (40)				0		(49)
0,			storage eclared o			or is not		(48) x (49)) =		1	10		(50)
Hot wa	iter stora	age loss	factor fr	om Tabl							0.	02		(51)
	nunity h e factor	•	ee section	on 4.3								03		(52)
			m Table	2b								.6		(52)
Energy	lost fro	m water	storage	, kWh/ye	ear			(47) x (51)	x (52) x (53) =	1.	03		(54)
Enter	(50) or (54) in (5	55)								1.	03		(55)
Water	storage	loss cal	culated f	or each	month			((56)m = (55) × (41)r	m				
(56)m=	32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(56)
If cylinde	er contains	dedicate	d solar sto	rage, (57)ı	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(57)
	•	•	inual) fro									0		(58)
	•		culated to com Tab		•		,	, ,	m cylinde	r thermo	stat)			
(59)m=	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)
Combi	loss cal	culated	for each	month (61)m =	(60) ÷ 36	65 × (41))m					•	
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)

Column 20.5.33	Total heat required for water heating calculated for each month $(62)m = 0.85 \times (45)m + (46)m + (57)m + (59)m + (61)m$	n										
Control Cont	(62)m= 205.53 181.34 190.88 171.71 168.71 151.38 145.98 159.36 158.82 178.03 187.49 200.78	(62)										
Colimate O O O O O O O O O	Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating)											
Output from water heater (64)m= 205.53	(add additional lines if FGHRS and/or WWHRS applies, see Appendix G)											
Column C	(63)m= 0 0 0 0 0 0 0 0 0 0 0 0	(63)										
Culput from water heater Cannual)	Output from water heater											
Heat gains from water heating, kWh/morth 0.25 [0.85 x (45)m + (61)m] + 0.8 x [(46)m + (57)m + (59)m] (65)m 94.18 83.64 89.31 82.1 81.94 75.34 74.38 78.83 77.82 85.04 87.35 92.6 (65)m 10clude (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating Sum (see Table 5), Watts	(64)m= 205.53 181.34 190.88 171.71 168.71 151.38 145.98 159.36 158.82 178.03 187.49 200.78	_										
65 me 94.18 83.64 89.31 82.1 81.94 75.34 74.38 76.83 77.82 85.04 87.35 92.6 (65) include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating S. Internal gains (see Table 5 and 5a)	Output from water heater (annual) 112											
include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan	Heat gains from water heating, kWh/month 0.25 $(0.85 \times (45))$ m + (61) m] + 0.8 $\times [(46)$ m + (57) m + (59) m]											
Metabolic gains (rable 5), Watts	(65)m= 94.18 83.64 89.31 82.1 81.94 75.34 74.38 78.83 77.82 85.04 87.35 92.6	(65)										
Metabolic gains (Table 5), Watts	include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating											
Solid Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 146.29	5. Internal gains (see Table 5 and 5a):											
Copy	Metabolic gains (Table 5), Watts											
Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 (67)m=	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec											
CF) March S0.76	(66)m= 146.29 146.29 146.29 146.29 146.29 146.29 146.29 146.29 146.29 146.29 146.29 146.29 146.29 146.29	(66)										
Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m= 323.5 326.86 318.4 300.39 277.66 256.29 242.02 238.66 247.12 265.13 287.86 309.23 (68) Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m= 52.07 52.07 52.07 52.07 52.07 52.07 52.07 52.07 52.07 52.07 52.07 52.07 52.07 52.07 52.07 [69] Pumps and fans gains (Table 5a) (70)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5											
(68)m= 323.5 326.86 318.4 300.39 277.66 256.29 242.02 238.66 247.12 265.13 287.86 309.23 (68) Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m= 52.07 52.07 52.07 52.07 52.07 52.07 52.07 52.07 52.07 52.07 52.07 52.07 52.07 52.07 52.07 52.07 52.07 (69) Pumps and fans gains (Table 5a) (70)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(67)m= 50.76 45.09 36.67 27.76 20.75 17.52 18.93 24.61 33.03 41.93 48.94 52.18	(67)										
Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m=	Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5											
Figure	(68)m= 323.5 326.86 318.4 300.39 277.66 256.29 242.02 238.66 247.12 265.13 287.86 309.23	(68)										
Pumps and fans gains (Table 5a) (70)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5											
Colored Colo	(69)m= 52.07 52.07 52.07 52.07 52.07 52.07 52.07 52.07 52.07 52.07 52.07 52.07 52.07	(69)										
Losses e.g. evaporation (negative values) (Table 5) (71)m=	Pumps and fans gains (Table 5a)											
(71)me 97.53 108.08 114.3 121.32 124.47 (72) Total internal gains: (60.68) \$97.23 \$461.75 <th< td=""><td>(70)m= 0 0 0 0 0 0 0 0 0 0 0</td><td>(70)</td></th<>	(70)m= 0 0 0 0 0 0 0 0 0 0 0	(70)										
Water heating gains (Table 5) (72)m=	Losses e.g. evaporation (negative values) (Table 5)											
Total internal gains = (66)m + (67)m + (68)m + (70)m + (71)m + (72)m	(71)m= -97.53 -97.53 -97.53 -97.53 -97.53 -97.53 -97.53 -97.53 -97.53 -97.53 -97.53	(71)										
Total internal gains =	Water heating gains (Table 5)											
(73)m= 601.68 597.23 575.93 543.01 509.37 479.28 461.75 470.05 489.05 522.19 558.95 586.7 (73) 6. Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation. Orientation: Access Factor Table 6d m² Table 6a Table 6b Table 6c (W) South 0.9x 0.77 x 12.15 x 46.75 x 0.63 x 0.7 = 173.6 (78) South 0.9x 0.77 x 12.15 x 76.57 x 0.63 x 0.7 = 284.31 (78) South 0.9x 0.77 x 12.15 x 97.53 x 0.63 x 0.7 = 362.16 (78) South 0.9x 0.77 x 12.15 x 110.23 x 0.63 x 0.7 = 409.32 (78) South 0.9x 0.77 x 12.15 x 110.23 x 0.63 x 0.7 = 426.54 (78) South 0.9x 0.77 x 12.15 x 114.87 x 0.63 x 0.7 = 426.54 (78) South 0.9x 0.77 x 12.15 x 110.55 x 110.55 x 0.63 x 0.7 = 426.54 (78) South 0.9x 0.77 x 12.15 x 110.55 x 0.63 x 0.7 = 426.54 (78)	(72)m= 126.58 124.46 120.04 114.03 110.13 104.64 99.97 105.95 108.08 114.3 121.32 124.47	(72)										
6. Solar gains: Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation. Orientation: Access Factor Table 6d Area m² Flux Table 6a Table 6b FF Table 6c Gains (W) South 0.9x 0.77	Total internal gains = $(66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m$											
Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation. Orientation: Access Factor Table 6d	(73)m= 601.68 597.23 575.93 543.01 509.37 479.28 461.75 470.05 489.05 522.19 558.95 586.7	(73)										
Orientation: Access Factor Table 6d Area m² Flux Table 6a g_{-} Table 6b FF Table 6c Gains (W) South 0.9x 0.77 x 12.15 x 46.75 x 0.63 x 0.7 = 173.6 (78) South 0.9x 0.77 x 12.15 x 76.57 x 0.63 x 0.7 = 284.31 (78) South 0.9x 0.77 x 12.15 x 97.53 x 0.63 x 0.7 = 362.16 (78) South 0.9x 0.77 x 12.15 x 110.23 x 0.63 x 0.7 = 409.32 (78) South 0.9x 0.77 x 12.15 x 114.87 x 0.63 x 0.7 = 426.54 (78) South 0.9x 0.77 x 12.15 x 110.55 x 0.63 x 0.7 = 410.49 (78)	6. Solar gains:											
Table 6d m ² Table 6a Table 6b Table 6c (W) South 0.9x 0.77 x 12.15 x 46.75 x 0.63 x 0.7 = 173.6 (78) South 0.9x 0.77 x 12.15 x 76.57 x 0.63 x 0.7 = 284.31 (78) South 0.9x 0.77 x 12.15 x 97.53 x 0.63 x 0.7 = 362.16 (78) South 0.9x 0.77 x 12.15 x 110.23 x 0.63 x 0.7 = 409.32 (78) South 0.9x 0.77 x 12.15 x 110.23 x 0.63 x 0.7 = 409.32 (78) South 0.9x 0.77 x 12.15 x 114.87 x 0.63 x 0.7 = 426.54 (78) South 0.9x 0.77 x 12.15 x 110.55 x 0.63 x 0.7 = 410.49 (78)	Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.											
South 0.9x 0.77 x 12.15 x 46.75 x 0.63 x 0.7 = 173.6 (78) South 0.9x 0.77 x 12.15 x 76.57 x 0.63 x 0.7 = 284.31 (78) South 0.9x 0.77 x 12.15 x 97.53 x 0.63 x 0.7 = 362.16 (78) South 0.9x 0.77 x 12.15 x 110.23 x 0.63 x 0.7 = 409.32 (78) South 0.9x 0.77 x 12.15 x 114.87 x 0.63 x 0.7 = 426.54 (78) South 0.9x 0.77 x 12.15 x 110.55 x 0.63 x 0.7 = 410.49 (78)	5 –											
South 0.9x 0.77 x 12.15 x 76.57 x 0.63 x 0.7 = 284.31 (78) South 0.9x 0.77 x 12.15 x 97.53 x 0.63 x 0.7 = 362.16 (78) South 0.9x 0.77 x 12.15 x 110.23 x 0.63 x 0.7 = 409.32 (78) South 0.9x 0.77 x 12.15 x 114.87 x 0.63 x 0.7 = 426.54 (78) South 0.9x 0.77 x 12.15 x 110.55 x 0.63 x 0.7 = 410.49 (78)	Table 6d m² Table 6a Table 6b Table 6c (W)											
South 0.9x 0.77 x 12.15 x 97.53 x 0.63 x 0.7 = 362.16 (78) South 0.9x 0.77 x 12.15 x 110.23 x 0.63 x 0.7 = 409.32 (78) South 0.9x 0.77 x 12.15 x 114.87 x 0.63 x 0.7 = 426.54 (78) South 0.9x 0.77 x 12.15 x 110.55 x 0.63 x 0.7 = 410.49 (78)	South 0.9x 0.77 x 12.15 x 46.75 x 0.63 x 0.7 = 173.6	(78)										
South 0.9x 0.77 x 12.15 x 110.23 x 0.63 x 0.7 = 409.32 (78) South 0.9x 0.77 x 12.15 x 114.87 x 0.63 x 0.7 = 426.54 (78) South 0.9x 0.77 x 12.15 x 110.55 x 0.63 x 0.7 = 410.49 (78)	South 0.9x 0.77 x 12.15 x 76.57 x 0.63 x 0.7 = 284.31	(78)										
South 0.9x 0.77 x 12.15 x 114.87 x 0.63 x 0.7 = 426.54 (78) South 0.9x 0.77 x 12.15 x 110.55 x 0.63 x 0.7 = 410.49 (78)	South 0.9x 0.77 x 12.15 x 97.53 x 0.63 x 0.7 = 362.16	(78)										
South 0.9x 0.77 x 12.15 x 110.55 x 0.63 x 0.7 = 410.49 (78)	South 0.9x 0.77 x 12.15 x 110.23 x 0.63 x 0.7 = 409.32	(78)										
	South 0.9x 0.77 x 12.15 x 114.87 x 0.63 x 0.7 = 426.54	(78)										
South 0.9x 0.77 x 12.15 x 108.01 x 0.63 x 0.77 = 401.07 (78)	South 0.9x 0.77 x 12.15 x 110.55 x 0.63 x 0.7 = 410.49	(78)										
	South 0.9x 0.77 x 12.15 x 108.01 x 0.63 x 0.7 = 401.07	(78)										
South 0.9x 0.77 x 12.15 x 104.89 x 0.63 x 0.7 = 389.49 (78)	South 0.9x 0.77 x 12.15 x 104.89 x 0.63 x 0.7 = 389.49	(78)										

South	0.9x	0.77	X	12.	15	x	10	01.89	x		0.63	x	0.7	=	378.32	(78)
South	0.9x	0.77	X	12.	15	x	8	2.59	x		0.63	x [0.7	=	306.66	(78)
South	0.9x	0.77	x	12.	15	x	5	5.42	x		0.63	х [0.7	=	205.77	(78)
South	0.9x	0.77	x	12.	15	x	4	40.4	x		0.63	x	0.7	_ =	150.01	(78)
	_					Ī										_
Solar	gains in	watts, ca	alculated	for eacl	h month				(83)m :	= Sı	um(74)m .	(82)m				
(83)m=	173.6	284.31	362.16	409.32	426.54	41	0.49	401.07	389.4	49	378.32	306.66	205.77	150.01	7	(83)
Total g	ains – ii	nternal a	nd solar	(84)m =	= (73)m ·	+ (8	33)m	, watts	•				•	•	_	
(84)m=	775.28	881.54	938.1	952.33	935.91	88	39.77	862.82	859.5	54	867.37	828.84	764.72	736.7	7	(84)
7. Me	an inter	nal temp	erature	(heating	season)										
			eating p	`		,	area f	from Tab	ole 9,	Th1	1 (°C)				21	(85)
•		J	ains for I			•			,		()					`
• • • • • • • • • • • • • • • • • • • •	Jan	Feb	Mar	Apr	May	È	Jun	Jul	Au	a	Sep	Oct	Nov	Dec	7	
(86)m=	0.88	0.83	0.78	0.69	0.58	┢━).44	0.32	0.33	- 	0.48	0.68	0.83	0.89	1	(86)
	· ,				T4 //	<u></u>								<u> </u>	_	
			ature in I			_		i 				00.74	1 00 07	1004	٦	(07)
(87)m=	19.83	20.08	20.35	20.65	20.84	20	0.96	20.99	20.9	9	20.94	20.71	20.27	19.81	J	(87)
Temp	erature	during h	eating p	eriods ir	rest of	dw	elling	from Ta	ble 9	, Th	n2 (°C)				_	
(88)m=	20.19	20.19	20.2	20.22	20.23	20	0.25	20.25	20.2	6	20.24	20.23	20.22	20.21		(88)
Utilisa	ation fac	tor for g	ains for r	est of d	welling,	h2,ı	m (se	e Table	9a)							
(89)m=	0.87	0.82	0.76	0.66	0.54		0.39	0.26	0.28	3	0.43	0.65	0.81	0.88	7	(89)
Mean	interna	l temper	ature in t	the rest	of dwelli	na '	T2 (f	ollow ste	ns 3 1	—- to 7	' in Tahl	e 9c)	•		_	
(90)m=	18.64	19	19.38	19.8	20.05	Ť	0.21	20.24	20.2		20.18	19.89	19.28	18.63	7	(90)
, ,			l l						<u> </u>	!	f	LA = Liv	ng area ÷ (4) =	0.47	(91)
			. "				٠ ،		/4		A) TO					」 ` ′
			ature (fo			`		i	- `-	_		20.07	10.74	1040	٦	(92)
(92)m=	19.2	19.51	19.84	20.19	20.42		0.56	20.59	20.5		20.53	20.27	19.74	19.18	J	(92)
(93)m=	19.2	19.51	ne mean 19.84	20.19	20.42	1	0.56	m Table	20.5		20.53	20.27	19.74	19.18	٦	(93)
				20.19	20.42	20	0.56	20.59	20.5	9	20.53	20.27	19.74	19.16		(93)
		·	uirement	nnoratuu	ro obtoir	ر ام	at eta	on 11 of	Table	. Ωh	oo tha	t Ti m-	(76)m an	d ro col	culato	
			or gains u			leu	ai Sit	з р 11 01	Table	; 9D), 50 illa	t 11,111=	(70)III ali	u i e- cai	Culate	
	Jan	Feb	Mar	Apr	May	Γ	Jun	Jul	Au	g	Sep	Oct	Nov	Dec	7	
Utilisa	ation fac	tor for g	ains, hm	•	,	<u> </u>				<u> </u>	•				_	
(94)m=	0.85	0.8	0.75	0.66	0.55	0).41	0.29	0.3		0.45	0.65	0.8	0.86	7	(94)
Usefu	ıl gains,	hmGm .	W = (94)	l)m x (84	4)m								<u>.</u> !		_	
(95)m=	659.66	707.93	699.37	629.8	518.79	36	3.74	249.25	259.6	61	392.45	540.59	608.24	635.68	7	(95)
Month	nly avera	age exte	rnal tem	perature	from Ta	able	e 8	•	•	•			•	•	-	
(96)m=	4.3	4.9	6.5	8.9	11.7	1	4.6	16.6	16.4	1	14.1	10.6	7.1	4.2	7	(96)
Heat	loss rate	e for mea	an intern	al tempe	erature,	Lm	, W =	=[(39)m :	x [(93)m-	- (96)m]			- -	
(97)m=	1025.52	998.96	906.35	743.24	569.98	37	6.74	252.33	263.2	22	412.19	632.38	837.54	1005.34	· I	(97)
Space	e heatin	g require	ement fo	r each n	nonth, k	/Vh/	/mont	th = 0.02	24 x [(97)	m – (95)m] x (4	11)m			
(98)m=	272.2	195.57	153.99	81.67	38.09		0	0	0		0	68.29	165.09	275.03		
									Т	otal	per year	(kWh/ye	ar) = Sum(9	18) _{15,912} =	1249.93	(98)
Space	e heatin	g require	ement in	kWh/m²	/year										15.88	(99)

9b. Energy requirements – Community heating scheme			
This part is used for space heating, space cooling or water heating pr Fraction of space heat from secondary/supplementary heating (Table		0	(301)
Fraction of space heat from community system $1 - (301) =$		1	(302)
The community scheme may obtain heat from several sources. The procedure allows		ne latter	_
includes boilers, heat pumps, geothermal and waste heat from power stations. See Ap Fraction of heat from Community boilers	pendix C.	0.4	(303a)
Fraction of community heat from heat source 2	[0.4	(303b)
Fraction of total space heat from Community boilers	(302) x (303a) =	0.4	(304a)
Fraction of total space heat from community heat source 2	(302) x (303b) =	0.4	(304b)
Factor for control and charging method (Table 4c(3)) for community h	eating system	1	(305)
Distribution loss factor (Table 12c) for community heating system]	1.05	(306)
Space heating	-	kWh/year	_
Annual space heating requirement		1249.93	╛
Space heat from Community boilers	(98) x (304a) x (305) x (306) =	524.97	(307a)
Space heat from heat source 2	(98) x (304b) x (305) x (306) =	524.97	(307b)
Efficiency of secondary/supplementary heating system in % (from Tal	ble 4a or Appendix E)	0	(308
Space heating requirement from secondary/supplementary system	(98) x (301) x 100 ÷ (308) =	0	(309)
Water heating Annual water heating requirement	[2100.02	7
If DHW from community scheme: Water heat from Community boilers	(64) x (303a) x (305) x (306) =	882.01	☐ (310a)
Water heat from heat source 2	(64) x (303b) x (305) x (306) =	882.01	(310b)
	.01 × [(307a)(307e) + (310a)(310e)] =	28.14	(313)
Cooling System Energy Efficiency Ratio		0	」(314)
Space cooling (if there is a fixed cooling system, if not enter 0)	= (107) ÷ (314) =	0	(315)
Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input from outside	de [287.39](330a)
warm air heating system fans	[0	(330b)
pump for solar water heating	[0	(330g)
Total electricity for the above, kWh/year	=(330a) + (330b) + (330g) =	287.39	(331)
Energy for lighting (calculated in Appendix L)	[358.61	(332)
Electricity generated by PVs (Appendix M) (negative quantity)	[-768.62	(333)
Electricity generated by wind turbine (Appendix M) (negative quantity) [0	(334)
10b. Fuel costs – Community heating scheme			
Fuel kWh/year	Fuel Price (Table 12)	Fuel Cost £/year	

(307a) x

Space heating from CHP

22.26

(340a)

x 0.01 =

Space heating from heat source 2	(307b) x	4.24 x 0.0°	1 = 22.26 (340b)
Water heating from CHP	(310a) x	4.24 × 0.0°	1 = 37.4 (342a)
Water heating from heat source 2	(310b) x	4.24 × 0.0°	1 = 37.4 (342b)
		Fuel Price	
Pumps and fans	(331)	13.19 x 0.0	1 = 37.91 (349)
Energy for lighting	(332)	13.19 x 0.0°	1 = 47.3 (350)
Additional standing charges (Table 12)			120 (351)
Energy saving/generation technologies			
Total energy cost	= (340a)(342e) + (345)(354) =		324.52 (355)
11b. SAP rating - Community heating	scheme		
Energy cost deflator (Table 12)			0.42 (356)
Energy cost factor (ECF)	$[(355) \times (356)] \div [(4) + 45.0] =$		1.1 (357)
SAP rating (section12)			84.63 (358)
12b. CO2 Emissions – Community hear			
	Energy kWh/ye		or Emissions kg CO2/year
CO2 from other sources of space and v	vater heating (not CHP)	•	
Efficiency of heat source 1 (%)	If there is CHP using two fuels repe	eat (363) to (366) for the second	d fuel 89 (367a)
Efficiency of heat source 2 (%)	If there is CHP using two fuels repe	eat (363) to (366) for the second	d fuel 89 (367b)
CO2 associated with heat source 1	[(307b)+(310b)] x 100 ÷	- (367b) x 0.22	= 341.47 (367)
CO2 associated with heat source 2	[(307b)+(310b)] x 100 ÷	- (367b) x 0.22	= 341.47 (368)
Electrical energy for heat distribution	[(313) x	0.52	= 14.6 (372)
Total CO2 associated with community s	systems (363)(366) +	(368)(372)	= 697.54 (373)
CO2 associated with space heating (se	econdary) (309) x	0	= 0 (374)
CO2 associated with water from immers	sion heater or instantaneous heater	(312) x 0.22	= 0 (375)
Total CO2 associated with space and w	vater heating (373) + (374) +	· (375) =	697.54 (376)
CO2 associated with electricity for pum	ps and fans within dwelling (331)) x	0.52	= 149.16 (378)
CO2 associated with electricity for lighti	ing (332))) x	0.52	= 186.12 (379)
Energy saving/generation technologies	(333) to (334) as applicable		
Item 1	(10-0)	0.52 x 0.0°	-390.91
Total CO2, kg/year	sum of (376)(382) =		633.9 (383)
Dwelling CO2 Emission Rate	(383) ÷ (4) =		8.05 (384)
El rating (section 14)			93.13 (385)
13b. Primary Energy – Community hear	ting scheme Energy	Primary	P.Energy
	kWh/ye		kWh/year
Energy from other sources of space and			
Efficiency of heat source 1 (%)	If there is CHP using two fuels repe	eat (363) to (366) for the second	d fuel 89 (367a)

Efficiency of heat source 2 (%)	If there is CHP using two fuels repeat (363) to (3	366) for the second fuel	89	(367b)
Energy associated with heat source 1	[(307b)+(310b)] x 100 ÷ (367b) x	1.22 =	1928.67	(367)
Energy associated with heat source 2	[(307b)+(310b)] x 100 ÷ (367b) x	1.22 =	1928.67	(368)
Electrical energy for heat distribution	[(313) x	=	86.39	(372)
Total Energy associated with community syste	ems (363)(366) + (368)(372)	=	3943.72	(373)
if it is negative set (373) to zero (unless spe	cified otherwise, see C7 in Appendix C)		3943.72	(373)
Energy associated with space heating (second	dary) (309) x	0 =	0	(374)
Energy associated with water from immersion	heater or instantaneous heater(312) x	1.22 =	0	(375)
Total Energy associated with space and water	r heating (373) + (374) + (375) =		3943.72	(376)
Energy associated with space cooling	(315) x	3.07	0	(377)
Energy associated with electricity for pumps a	nd fans within dwelling (331)) x	3.07	882.3	(378)
Energy associated with electricity for lighting	(332))) x	3.07	1100.92	(379)
Energy saving/generation technologies Item 1		3.07 x 0.01 =	-2359.67	(380)
Total Primary Energy, kWh/year	sum of (376)(382) =		3567.27	(383)

		User D	etails:						
Assessor Name:	John Ashe	Strom	a Num	her:		STRO	031268		
Software Name:									
		Property i	Address	: Unit 7 -	COPPE	ETTS W	OOD, Lo	ndon	
Address :									
1. Overall dwelling dime	ensions:								
Ground floor			a(m²)	(1a) v		ight(m)	7(20)	Volume(m³	<u>-</u>
			8.72	(1a) x	2	.66	(2a) =	209.4	(3a)
Total floor area TFA = (1	a)+(1b)+(1c)+(1d)+(1e)+(1	n)	8.72	(4)					
Dwelling volume				(3a)+(3b)+(3c)+(3c	d)+(3e)+	(3n) =	209.4	(5)
2. Ventilation rate:									
	main seconda heating heating	iry 	other	_	total			m³ per hou	r
Number of chimneys	0 + 0	+	0	=	0	X	40 =	0	(6a)
Number of open flues	0 + 0] + [0] = [0	x :	20 =	0	(6b)
Number of intermittent fa	ns			Γ	3	X	10 =	30	(7a)
Number of passive vents	.			Ī	0	x -	10 =	0	(7b)
Number of flueless gas fi	res			Ē	0	x	40 =	0	(7c)
				_					
							Air ch	nanges per ho	our
·	ys, flues and fans = $(6a)+(6b)+$				30		÷ (5) =	0.14	(8)
If a pressurisation test has b Number of storeys in the	peen carried out or is intended, proce	ed to (17), o	otherwise (continue fr	om (9) to	(16)			— (0)
Additional infiltration	ne aweiling (115)					[(9)]	-1]x0.1 =	0	(9) (10)
	.25 for steel or timber frame of	or 0.35 for	r masoni	y constr	uction	1(0)		0	(11)
•••	resent, use the value corresponding	to the great	er wall are	a (after					
deducting areas of openii	ngs); if equal user 0.35 floor, enter 0.2 (unsealed) or () 1 (seale	ad) else	enter ()				0	(12)
If no draught lobby, en	,	7.1 (Joure	, cioc	citici o				0	(13)
• ,	s and doors draught stripped							0	(14)
Window infiltration			0.25 - [0.2	x (14) ÷ 1	00] =			0	(15)
Infiltration rate			(8) + (10)	+ (11) + (1	12) + (13)	+ (15) =		0	(16)
• • •	q50, expressed in cubic metr	•	•	•	etre of e	envelope	area	5	(17)
•	ity value, then $(18) = [(17) \div 20] +$							0.39	(18)
Air permeability value applie Number of sides sheltere	es if a pressurisation test has been do	one or a deg	gree air pe	rmeability	is being u	sed			(19)
Shelter factor	cu		(20) = 1 -	[0.0 75 x (1	19)] =			0	-(20)
Infiltration rate incorporat	ting shelter factor		(21) = (18) x (20) =				0.39	(21)
Infiltration rate modified f	or monthly wind speed								
Jan Feb	Mar Apr May Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind sp	eed from Table 7								
(22)m= 5.1 5	4.9 4.4 4.3 3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (2	2)m <i>÷ 4</i>								
	1.23 1.1 1.08 0.95	0.95	0.92	1	1.08	1.12	1.18]	
, ,,	1 1 1 1 1 1 1 1 1 1	1		•				J	

Adjusted infiltr	ation rat	e (allowi	ng for sh	nelter an	d wind s	speed) =	(21a) x	(22a)m					
0.5	0.49	0.48	0.43	0.42	0.37	0.37	0.36	0.39	0.42	0.44	0.46		
Calculate effec		_	rate for t	he appli	cable ca	se	•						
If mechanicate of the street o			andiv N (2	3h) - (23s	a) v Emy (e	aguation (I	N5N othe	nvice (23h	n) = (23a)			0	(23
If balanced with		0		, ,	,	. `	,, .	,) = (23a)			0	(23
a) If balance		•	•	ŭ		`		•	2h\m + /	22h) [1 (220)	0 . 1001	(23
(24a)m= 0	0		0	0	0	0	0	0	0	0	0	- 100] 	(24
b) If balance		<u> </u>										J	•
24b)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(24
c) If whole h	ı ıouse ex	tract ver	tilation o	r positiv	re input v	ı ventilatio	on from o	utside			Į	ı	
if (22b)n	n < 0.5 ×	(23b), t	hen (24d	c) = (23b	o); other	wise (24	c) = (22k	o) m + 0	.5 × (23b)			
24c)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24
d) If natural if (22b)n							on from I 0.5 + [(2		0.5]				
(24d)m= 0.63	0.62	0.62	0.59	0.59	0.57	0.57	0.57	0.58	0.59	0.6	0.61		(24
Effective air	change	rate - er	nter (24a) or (24k	o) or (24	c) or (24	d) in box	(25)	-			•	
(25)m= 0.63	0.62	0.62	0.59	0.59	0.57	0.57	0.57	0.58	0.59	0.6	0.61		(25
3. Heat losse	s and he	at loss r	naramete	⊃r·									
ELEMENT	Gros	•	Openin		Net Ar	ea	U-valı	IE.	AXU		k-value	a .	ΑΧk
	area		m		A ,r		W/m2		(W/I	<)	kJ/m²-l		kJ/K
Vindows					12.15	₅ x1	/[1/(1.4)+	0.04] =	16.11				(2
Floor					78.72	<u>x</u>	0.13	-	10.2336	5 [(28
Nalls	27.3	34	12.1	5	15.19) x	0.18	=	2.73			$\neg \Box$	(29
Total area of e	elements	, m²			106.0	6							(3:
for windows and						ated using	g formula 1	/[(1/U-valu	ue)+0.04] a	s given in	paragraph	n 3.2	
** include the area				ls and par	titions		(26)(30)	(22)					
Fabric heat los		•	U)				(20)(30)		(20) : (20	a) . (20-)	(20-)	29.08	(3:
Heat capacity		,	. Cm .	T [. l. 1/m21/			,	(30) + (32		(32e) =	9570.6	(34
Γhermal mass ⁻ or design assess	•	•		,			racisaly the		tive Value:		ahla 1f	250	(3
can be used inste				CONSTRUCT	ion are no	. Kilowii pi	colscry the	maioative	, values of	11011 111 1	abic 11		
Thermal bridge	es : S (L	x Y) cal	culated ı	using Ap	pendix l	<						5.3	(3
f details of therma		are not kn	own (36) =	= 0.05 x (3	1)								
Total fabric he									(36) =			34.38	(3
/entilation hea	·		l monthly			<u> </u>	1		= 0.33 × (25)m x (5	1	1	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		(0)
38)m= 43.24	42.9	42.57	41.02	40.73	39.37	39.37	39.12	39.89	40.73	41.31	41.93		(3
Heat transfer of		·						(39)m	= (37) + (3			1	
39)m= 77.62	77.28	76.95	75.39	75.1	73.75	73.75	73.5	74.27	75.1	75.69	76.31		
Jost loce para	meter (l	HLP) W	m²K						Average = = (39)m ÷		12 /12=	75.39	(3
ייאט פפטו ומטו		·-· /, * */				_		(.0)	(30)	V 77		_	
Heat loss para	0.98	0.98	0.96	0.95	0.94	0.94	0.93	0.94	0.95	0.96	0.97		

Number of days in month (Table 1a)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wat	ter heat	ing ener	gy requi	rement:								kWh/ye	ear:	
if TF				[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (⁻	ΓFA -13.	2. 9)	44		(42)
Reduce t	the annua	ıl average		usage by	5% if the a	welling is	designed t	(25 x N) to achieve		se target o		.11		(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
г			day for ea										l	
(44)m=	101.32	97.63	93.95	90.26	86.58	82.89	82.89	86.58	90.26	93.95	97.63	101.32		
Energy c	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	n x nm x C	OTm / 3600			m(44) ₁₁₂ = ables 1b, 1		1105.27	(44)
(45)m=	150.25	131.41	135.6	118.22	113.44	97.89	90.71	104.09	105.33	122.75	133.99	145.51		
If instanta	aneous w	ater heatii	na at point	of use (no	hot water	storage).	enter 0 in	boxes (46		Γotal = Su	m(45) ₁₁₂ =		1449.18	(45)
(46)m=	0	0	0	0	0	0	0	0	0	0	0	0		(46)
` '	storage	-	,	Ů					,	· ·	Ů	Ů		, ,
Storage	e volum	e (litres)	includin	g any so	olar or W	/WHRS	storage	within sa	ame ves	sel		150		(47)
Otherw Water s	vise if no storage	stored loss:	nd no ta hot wate eclared l	er (this in	icludes i	nstantar	neous co	(47) mbi boil	ers) ente	er 'O' in (ſ	(40)
•			m Table		טווא פו וכ	wii (Kvvi	i/uay).					0		(48)
•			storage		ear			(48) x (49)	۱ =			0		(49) (50)
• • • • • • • • • • • • • • • • • • • •			eclared o	-		or is not		(40) X (40)	_			U		(30)
		•	factor fr ee section		e 2 (kW	h/litre/da	ıy)					0		(51)
	-	from Tal		311 4.0								0		(52)
Tempe	rature fa	actor fro	m Table	2b							(0		(53)
			storage	, kWh/ye	ear			(47) x (51)	x (52) x (53) =	(0		(54)
`	` ' '	54) in (5	•								(0		(55)
г	storage	loss cal	culated f	or each	month			((56)m = (55) × (41)ı	n			ı	
(56)m=	0	0	0	0	0	0(50) (0	0	0 (50)	0	0	0	: 1 1	(56)
							1	· · · · ·				m Append	IX II	 \
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
-		,	inual) fro				/ \	_			(0		(58)
-					,		. ,	65 × (41) ng and a		r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	loss cal	culated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m						
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)

Total heat re	equired for	water he	eating ca	alculated	l foi	r each mo	nth ((62)r	m =	0.85 × (45)m -	+ (46)m +	(57)m +	(59)m + (61)m	
(62)m= 127.7	71 111.7	115.26	100.49	96.42	8	3.2 77.	.1	88.4	17	89.53	104.34	113.89	123.68		(62)
Solar DHW inp	ut calculated	using App	endix G oı	Appendix	H (negative qua	antity)) (ente	er '0'	if no solar	contrib	ution to wate	er heating)		
(add additio	nal lines if	FGHRS	and/or \	VWHRS	ар	plies, see	App	pend	ix G	i)					
(63)m= 0	0	0	0	0		0 0		0		0	0	0	0		(63)
Output from	water hea	iter													
(64)m= 127.7	71 111.7	115.26	100.49	96.42	8	3.2 77.	.1	88.4	17	89.53	104.34	113.89	123.68		_
								(Outp	ut from wa	iter heat	er (annual) ₁	12	1231.8	(64)
Heat gains f	rom water	heating,	kWh/m	onth 0.2	5 ′	[0.85 × (4	5)m	+ (6	1)m] + 0.8 x	[(46)n	n + (57)m	+ (59)m]	
(65)m= 31.9	3 27.92	28.82	25.12	24.11	2	0.8 19.2	28	22.1	12	22.38	26.08	28.47	30.92		(65)
include (5	7)m in cal	culation of	of (65)m	only if c	ylin	der is in t	he d	welli	ing o	or hot wa	ater is	from com	munity h	eating	
5. Internal	gains (see	e Table 5	and 5a):											
Metabolic ga	ains (Table	e 5), Wat	ts												
Jar		Mar	Apr	May	Ι,	Jun Ju	ال	Αι	Jg	Sep	Oct	Nov	Dec		
(66)m= 121.9	121.91	121.91	121.91	121.91	12	1.91 121.	.91	121.	91	121.91	121.91	121.91	121.91		(66)
Lighting gair	ns (calcula	ted in Ap	pendix	L, equat	ion	L9 or L9a	a), al	so s	ee T	able 5		-		•	
(67)m= 20.3	1 18.04	14.67	11.1	8.3	7	7.01 7.5	57	9.8	4	13.21	16.77	19.58	20.87		(67)
Appliances	gains (calc	ulated in	Append	dix L, eq	uati	ion L13 or	r L13	3a), a	also	see Tal	ole 5	•		•	
(68)m= 216.7	74 218.99	213.33	201.26	186.03	17	1.71 162.	.15	159	.9	165.57	177.64	192.87	207.18		(68)
Cooking gai	ns (calcula	ted in A	pendix	L, equa	tion	L15 or L1	15a),	, also	o se	e Table	5				
(69)m= 35.1	`	35.19	35.19	35.19	т —	5.19 35.	Ť	35.1		35.19	35.19	35.19	35.19		(69)
Pumps and	fans gains	(Table 5	5a)											ı	
(70)m= 0	0	0	0	0		0 0)	0		0	0	0	0		(70)
Losses e.g.	evaporation	n (negat	tive valu	es) (Tab	le 5				- 1					I	
(71)m= -97.5		-97.53	-97.53	-97.53	_	7.53 -97.	.53	-97.	53	-97.53	-97.53	-97.53	-97.53		(71)
Water heati	ng gains (1	rable 5)			-	Į.			- 1					ı	
(72)m= 42.9		38.73	34.89	32.4	28	8.89 25.9	91	29.7	73	31.09	35.06	39.55	41.56		(72)
Total intern	-!					(66)m + (6	67)m	+ (68)m +	(69)m + (70)m +	(71)m + (72)			
(73)m= 339.5	_ -	326.3	306.83	286.3	26	7.18 255	5.2	259.	04	269.44	289.04	311.56	329.18		(73)
6. Solar ga	ins:														
Solar gains a	re calculated	using sola	r flux from	Table 6a	and	associated e	equat	ions t	o cor	overt to the	e applica	able orientat	ion.		
Orientation:			Area			Flux				g_		FF		Gains	
	Table 6d		m²			Table 6	a		Ta	able 6b	•	Table 6c		(W)	
South 0.9	x 0.77	Х	12.	15	x [46.75		x		0.63	x	0.7	=	173.6	(78)
South 0.9	x 0.77	x	12.	15	x	76.57		х		0.63	x	0.7	=	284.31	(78)
South 0.9	× 0.77	Х	12.	15	x [97.53		x		0.63	×	0.7	=	362.16	(78)
South 0.9	× 0.77	x	12.	15	x	110.23		x		0.63	×	0.7		409.32	(78)
South 0.9	× 0.77	х	12.	15	x	114.87	可	x		0.63	×	0.7	=	426.54	(78)
South 0.9	× 0.77	х	12.	15	x [110.55	一	x		0.63	×	0.7	=	410.49	(78)
South 0.9	× 0.77	х	12.	15	x	108.01	一	x		0.63	×	0.7	=	401.07	(78)
South 0.9	x 0.77	х	12.	15	x	104.89	一	х		0.63	×	0.7	=	389.49	(78)
											_ '				_

South	0.9x	0.77	X	12.	15	x [101.89	_ x _	0.63	x	0.7	=	378.32	(78)
South	0.9x	0.77	х	12.	15	x $\overline{}$	82.59	x	0.63	x	0.7		306.66	(78)
South	0.9x	0.77	x	12.	15	x $$	55.42	×	0.63	x	0.7		205.77	(78)
South	0.9x	0.77	x	12.	15	x =	40.4	i x [0.63	_ x [0.7		150.01	(78)
	L							_						
Solar	ains in	watts, ca	alculated	for eac	h month			(83)m =	Sum(74)m	(82)m				
(83)m=	173.6	284.31	362.16	409.32	426.54	410.	49 401.07	389.49	378.32	306.66	205.77	150.01		(83)
Total g	ains – iı	nternal a	nd solar	(84)m =	= (73)m ·	+ (83)	m , watts		!			!		
(84)m=	513.14	622.47	688.46	716.15	712.84	677.	67 656.27	648.5	647.76	595.7	517.34	479.19		(84)
7. Me	an inter	nal temp	erature	(heating	season)			•		,	•		
		·					ea from Ta	ble 9 T	h1 (°C)				21	(85)
-		_	•			•	Table 9a)	D.O O, .	(0)				21	
Otilise	Jan	Feb	Mar	Apr	May	Ju		Aug	Sep	Oct	Nov	Dec		
(86)m=	1	0.99	0.98	0.94	0.85	0.6	+	0.52	0.74	0.94	0.99	1		(86)
								<u> </u>	<u> </u>	1 0.01	0.00	<u> </u>		()
							steps 3 to	1					Ī	(07)
(87)m=	20.04	20.23	20.45	20.7	20.88	20.9	8 21	21	20.96	20.73	20.33	20.01		(87)
Temp	erature	during h	eating p	eriods ir	rest of	dwell	ing from T	able 9,	Th2 (°C)	_				
(88)m=	20.1	20.1	20.1	20.12	20.12	20.1	4 20.14	20.14	20.13	20.12	20.12	20.11		(88)
Utilisa	ation fac	tor for g	ains for i	rest of d	welling,	h2,m	(see Table	9a)						
(89)m=	1	0.99	0.97	0.91	0.8	0.5	<u>` </u>	0.42	0.67	0.92	0.99	1		(89)
Mean	intorna	l tompor	ature in	the rest	of dwalli	na T	2 (follow st	one 3 to	7 in Tah	la Ocl	!	!		
(90)m=	19.22	19.41	19.63	19.88	20.04	20.1	`	20.14		19.91	19.53	19.2		(90)
(00)										ļ	ng area ÷ (0.47	(91)
											•	,	0.47	
							= fLA × T1			i —	1	T	Ī	(00)
(92)m=	19.6	19.79	20.02	20.27	20.44	20.5		20.54		20.3	19.91	19.58		(92)
					· ·		from Table	1		r <u> </u>	1004	10.50	1	(02)
(93)m=	19.6	19.79	20.02	20.27	20.44	20.5	2 20.54	20.54	20.51	20.3	19.91	19.58		(93)
		·	uirement		ra abtair	- od ot	otop 11 of	Toblo	Ob as the	tTim /	76\m on	d ro oole	vulata	
			emanter or gains i	•		ieu ai	step 11 of	rabie	90, 80 (112	at 11,111=(76)III an	u re-caic	uiale	
	Jan	Feb	Mar	Apr	May	Ju	n Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac		ains, hm	•				`	<u>, 1 </u>	!	1	1		
(94)m=	1	0.99	0.97	0.92	0.82	0.6	3 0.44	0.47	0.7	0.92	0.99	1		(94)
Usefu	ıl gains,	hmGm .	, W = (94	1)m x (8	4)m				!				l	
(95)m=	510.68	613.81	665.19	657.7	581.96	424.	94 289.21	302.4	7 452.69	550.93	510.99	477.58		(95)
Month	nly avera	age exte	rnal tem	perature	from Ta	able 8	3	•	•	•	•	•		
(96)m=	4.3	4.9	6.5	8.9	11.7	14.0	6 16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	for mea	an intern	al tempe	erature,	Lm , ۱	N = [(39)m]	x [(93)	m– (96)m]	-		•	
(97)m=	1187.48	1150.87	1040.08	856.9	656.09	436.	96 290.49	304.20	475.87	728.19	969.36	1173.52		(97)
Space	e heatin	g require	ement fo	r each n	nonth, k	/Vh/m	onth = 0.0	24 x [(9	7)m – (95)m] x (4	1)m		•	
(98)m=	503.54	360.9	278.92	143.42	55.15	0	0	0	0	131.88	330.03	517.78		
								To	tal per year	(kWh/yea	r) = Sum(9	8)15,912 =	2321.62	(98)
Space	e heatin	g require	ement in	kWh/m²	² /year								29.49	(99)
•		•			-									

8c. Sp	pace co	oling req	uiremer	nt										
Calcu	lated fo	r June, J	luly and	August.	See Tal	ole 10b							•	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Heat I	oss rate	Lm (ca	lculated	using 2	5°C inter	nal temp	erature	and exte	ernal ten	nperatur	e from T	able 10)		
(100)m=	0	0	0	0	0	693.26	545.76	558.61	0	0	0	0		(100)
Utilisa	ition fac	tor for lo	ss hm											
(101)m=	0	0	0	0	0	0.94	0.97	0.97	0	0	0	0		(101)
Usefu	l loss, h	mLm (V	/atts) = ((100)m x	(101)m								•	
(102)m=	0	0	0	0	0	649.82	531.53	541.93	0	0	0	0		(102)
Gains	(solar o	gains cal	culated	for appli	cable we	eather re	gion, se	e Table	10)					
(103)m=	0	0	0	0	0	883.32	856.47	849.08	0	0	0	0		(103)
•	Space cooling requirement for month, whole dwelling, continuous (kWh) = $0.024 \times [(103)m - (102)m] \times (41)m$ set (104)m to zero if (104)m < $3 \times (98)m$													
set (104)m to zero if (104)m < $3 \times (98)$ m (104)m= 0 0 0 0 168.12 241.75 228.51 0 0 0 0														
-									Total	= Sum(104)	=	638.38	(104)
Cooled	fraction	า							f C =	cooled	area ÷ (4	4) =	1	(105)
r		actor (Ta	able 10b)									1	
(106)m=	0	0	0	0	0	0.25	0.25	0.25	0	0	0	0		_
_									Total	l = Sum(104)	=	0	(106)
· .		requirer										ı		
(107)m=	0	0	0	0	0	42.03	60.44	57.13	0	0	0	0		–
									Total	= Sum(107)	=	159.6	(107)
Space	cooling	requirer	nent in k	:Wh/m²/y	/ear				(107)	\div (4) =			2.03	(108)
8f. Fab	ric Ener	rgy Effici	ency (ca	alculated	only un	der spec	cial cond	litions, se	ee sectic	on 11)				
Fabrio	Energy	y Efficier	псу						(99) -	+ (108) =	=		31.52	(109)
Targe	t Fabri	c Energ	y Efficie	ency (TF	EE)								36.25	(109)

			llser F	Details:						
Assessor Name:	John Ashe		OSCI L	Strom	a Nium	hor.		STDO	031268	
Software Name:	Stroma FSAP	2012		Softwa					on: 1.0.5.8	
			roperty	Address			ETTS W			
Address :										
1. Overall dwelling dime	ensions:									
0 40				a(m²)	1	Av. He	ight(m)	1	Volume(m³	_
Ground floor			7	78.72	(1a) x	2	.66	(2a) =	209.4	(3a)
Total floor area TFA = (1	a)+(1b)+(1c)+(1d)-	+(1e)+(1r	n) 7	78.72	(4)					
Dwelling volume					(3a)+(3b)+(3c)+(3d	l)+(3e)+	.(3n) =	209.4	(5)
2. Ventilation rate:										
	main heating	secondar heating	У	other		total			m³ per hou	r
Number of chimneys	0		+	0] = [0	X 4	40 =	0	(6a)
Number of open flues	0	0	Ī + [0	Ī = [0	x	20 =	0	(6b)
Number of intermittent fa	ans					3	x .	10 =	30	(7a)
Number of passive vents	S				F	0	x .	10 =	0	
Number of flueless gas f	ires				F	0	X	40 =	0	(7c)
gae i					L					
								Air ch	nanges per ho	ur
Infiltration due to chimne	ys, flues and fans	= (6a)+(6b)+(7	a)+(7b)+((7c) =	Γ	30		÷ (5) =	0.14	(8)
If a pressurisation test has b		ended, procee	d to (17),	otherwise o	continue fr	om (9) to ((16)			<u>-</u>
Number of storeys in t	he dwelling (ns)								0	(9)
Additional infiltration Structural infiltration: 0	OF for atool or time	aar frama ar	0 2E to	r maaan	m. conotr	ustion	[(9)	-1]x0.1 =	0	(10)
if both types of wall are p					•	uction			0	(11)
deducting areas of openi	ngs); if equal user 0.35	, ,	J		,					_
If suspended wooden	•	,	.1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, en	•								0	(13)
Percentage of window Window infiltration	s and doors draugi	nt stripped		0.25 - [0.2) v (14) ± 1	1001 -			0	= (14)
Infiltration rate				•	. ,	12) + (13) -	+ (15) =		0	(15)
Air permeability value,	a50. expressed in	cubic metre	s per ho					area	5	(17)
If based on air permeabi	•		•	•	•				0.39	(18)
Air permeability value applie	-					is being u	sed			
Number of sides sheltered	ed			(00)	TO 075 (4	10)1			0	(19)
Shelter factor				(20) = 1 -		19)] =			1	(20)
Infiltration rate incorpora	•			(21) = (18) X (20) =				0.39	(21)
Infiltration rate modified t		1	1	1 1	Con	Oct	Nov	Doo	1	
Jan Feb		lay Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind sp (22)m= 5.1 5	beed from Table 7 4.9 4.4 4.	3 3.8	3.8	3.7	4	4.3	4.5	4.7]	
(22)111= 3.1 3	4.4 4.	3.0	3.0	3.1	<u> </u>	4.3	4.0	4.7	I	
Wind Factor (22a)m = (2	2)m ÷ 4								_	
(22a)m= 1.27 1.25	1.23 1.1 1.0	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjusted infiltr	ation rat	e (allowi	ing for sh	nelter an	d wind s	speed) =	: (21a) x	(22a)m					
0.5	0.49	0.48	0.43	0.42	0.37	0.37	0.36	0.39	0.42	0.44	0.46		
Calculate effe		_	rate for t	he appli	cable ca	se	•						
If mechanical If exhaust air h			andiv N (2	3h) - (23s	a) v Emy (e	aguation (I	N5N othe	nwica (23h	n) = (23a)			0	(23
If balanced with		0		, ,	,	. `	,, .	,) = (20a)			0	(23
a) If balance		•	•	ŭ		,		,	2h\m + (1	72h) [1 (220)	0 . 1001	(23
(24a)m= 0	0	0	0	0	0	0	0	0	0	0	0	- 100] 	(24
b) If balance												J	`
24b)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(24
c) If whole h	ıouse ex	tract ver	ntilation o	r positiv	/e input v	ventilatio	on from (utside			Į	ı	
if (22b)r	n < 0.5 ×	د (23b), t	then (24)	c) = (23b	o); other	wise (24	c) = (22h	o) m + 0	.5 × (23b)			
24c)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24
d) If natural if (22b)r	ventilation $n = 1$, the								0.5]				
(24d)m= 0.63	0.62	0.62	0.59	0.59	0.57	0.57	0.57	0.58	0.59	0.6	0.61		(24
Effective air	change	rate - er	nter (24a) or (24k	o) or (24	c) or (24	ld) in box	(25)			•	•	
(25)m= 0.63	0.62	0.62	0.59	0.59	0.57	0.57	0.57	0.58	0.59	0.6	0.61		(25
3. Heat losse	e and he	at loss i	naramet	ar:									
	S and ne	·	Openin		Net Ar	.00	U-val	10	AXU		k-value		ΑΧk
ELEMENT	area		r		A,r		W/m2		(W/F	<)	kJ/m²-l		λλκ ⟨J/K
Vindows					12.15	₅ _x 1	/[1/(0.9)+	0.04] =	10.56				(27
Floor					78.72	<u>x</u>	0.13		10.2336	<u> </u>		$\neg \vdash$	(28
Walls	27.3	34	12.1	5	15.19) x	0.15	=	2.28			\exists \Box	(29
Total area of e	elements	, m²			106.0	6							(3:
for windows and						ated using	g formula 1	/[(1/U-valu	ıе)+0.04] а	s given in	paragraph	1 3.2	
** include the area				ls and par	titions		(00) (00)	(00)					
Fabric heat los		,	U)				(26)(30)		(22)		(22.)	23.07	(3:
Heat capacity		` '		TE 4) :	. 1. 1/217			., ,	(30) + (32		(32e) =	9570.6	(34
Thermal mass	•	•		,			rooioolu thu		itive Value:		abla 1f	100	(3
For design assess an be used inste				CONSTRUCT	ion are noi	i kriowri pi	recisely trie	Indicative	e values of	TIVIPINI	аые п		
Thermal bridge	es : S (L	x Y) cal	culated (using Ap	pendix I	K						15.91	(3
f details of therma	al bridging	are not kn	own (36) =	= 0.05 x (3	11)								
Total fabric he	at loss							(33) +	(36) =			38.98	(3
/entilation hea	at loss ca	alculated	monthly	/	,	,		(38)m	$=0.33\times($	25)m x (5)	1	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
38)m= 43.24	42.9	42.57	41.02	40.73	39.37	39.37	39.12	39.89	40.73	41.31	41.93		(38
	coefficier	nt, W/K						(39)m	= (37) + (3	38)m		_	
leat tr <u>ansfe</u> r o	04.00	81.55	79.99	79.7	78.35	78.35	78.1	78.87	79.7	80.29	80.9		
	81.88											1	
39)m= 82.21	!	71 D) 744	/m2k/						Average =		12 /12=	79.99	(39
Heat transfer (39)m= 82.21 Heat loss para 40)m= 1.04	!	HLP), W/	/m²K 1.02	1.01	1	1 1	0.99		Average = (39)m ÷		1.03	79.99]	(39

Number of days in month (Table 1a)

Nullibe	ei oi day	/S III IIIOI	· `	ie ia)	ı	ı	ī	ī	ı	I	ı		1	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	ater hea	ting ene	rgy requi	irement:								kWh/ye	ear:	
		ıpancy, l										44		(42)
	FA > 13.9 FA £ 13.9		+ 1.76 x	[1 - exp	(-0.0003	849 x (TI	FA -13.9)2)] + 0.0	0013 x (ΓFA -13.	9)			
Annua	l averag	e hot wa	ater usaç									.11		(43)
		_	hot water person per			-	-	to achieve	a water us	se target o	f			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate			r day for ea				ļ							
(44)m=	101.32	97.63	93.95	90.26	86.58	82.89	82.89	86.58	90.26	93.95	97.63	101.32		
En a ray	contont of	bot water	used sel	audoto d ma	anthly 1	100 v V/d v		Tm / 260/			m(44) ₁₁₂ =		1105.27	(44)
		1	used - cal											
(45)m=	150.25	131.41	135.6	118.22	113.44	97.89	90.71	104.09	105.33	122.75 Total = Su	133.99 m(45) ₁₁₂ =	145.51	1449.18	(45)
If instan	taneous w	ater heatii	ng at point	of use (no	hot water	r storage),	enter 0 in	boxes (46		rotar – ou	111(40)112 -		1440.10	(```
(46)m=	0	0	0	0	0	0	0	0	0	0	0	0		(46)
	storage		\ in aludin	.a. opv. o	olor or M	WALDO	otorogo	within o	ama vaa	ool			· 	(47)
•		, ,) includin and no ta	•			_		anie ves	SEI		0		(47)
	•	-	hot wate		-			` '	ers) ente	er '0' in (47)			
	storage													
			eclared l		or is kno	wn (kWl	n/day):					0		(48)
•			m Table					(10)				0		(49)
٠.			r storage eclared o	-		or is not		(48) x (49)) =			0		(50)
			factor fr									0		(51)
		eating s from Ta	see section	on 4.3									l	(50)
			m Table	2b							-	0 0		(52) (53)
-			· storage		ear			(47) x (51)) x (52) x (53) =		0		(54)
Enter	(50) or ((54) in (5	55)									0		(55)
Water	storage	loss cal	culated f	for each	month			((56)m = (55) × (41)	m				
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinde	er contains	s dedicate	d solar sto	rage, (57)ı	m = (56)m	x [(50) – ([H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
	•	`	nnual) fro									0		(58)
	-		culated trom Tab			•	. ,	, ,		r thormo	etat)			
(59)m=		0	0	0	0	0	0		0	0	0 0	0		(59)
			for each	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>						, ,
(61)m=	0	o 0	or each	0	0	(60) ÷ 30	05 × (41)	0	0	0	0	0		(61)
()	<u> </u>	L		L	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	L			I	()

Total heat required for water heating calculated for each month (62)m = 0.8	85 × (45)m + (46)m + (57)m + (59)m + (61)m													
(62)m= 127.71 111.7 115.26 100.49 96.42 83.2 77.1 88.47 8	9.53 104.34 113.89 123.68 (62)													
Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if r	no solar contribution to water heating)													
(add additional lines if FGHRS and/or WWHRS applies, see Appendix G)														
(63)m= 0 0 0 0 0 0 0	0 0 0 0 (63)													
Output from water heater														
(64)m= 127.71 111.7 115.26 100.49 96.42 83.2 77.1 88.47 8	9.53 104.34 113.89 123.68													
Output f	rom water heater (annual) ₁₁₂ 1231.8 (64)													
Heat gains from water heating, kWh/month 0.25 ´ [0.85 x (45)m + (61)m] +	0.8 x [(46)m + (57)m + (59)m]													
(65)m= 31.93 27.92 28.82 25.12 24.11 20.8 19.28 22.12 2	2.38 26.08 28.47 30.92 (65)													
include (57)m in calculation of (65)m only if cylinder is in the dwelling or	hot water is from community heating													
5. Internal gains (see Table 5 and 5a):														
Metabolic gains (Table 5), Watts														
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec														
(66)m= 121.91 121.91 121.91 121.91 121.91 121.91 121.91 121.91 121.91 121.91 121.91	21.91 121.91 121.91 121.91 (66)													
Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Tab	ole 5													
(67)m= 20.31 18.04 14.67 11.1 8.3 7.01 7.57 9.84 1	3.21 16.77 19.58 20.87 (67)													
Appliances gains (calculated in Appendix L, equation L13 or L13a), also se	ee Table 5													
Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m= 216.74 218.99 213.33 201.26 186.03 171.71 162.15 159.9 165.57 177.64 192.87 207.18 (68)														
Cooking gains (calculated in Appendix L, equation L15 or L15a), also see	Table 5													
(69)m= 35.19 35.19 35.19 35.19 35.19 35.19 35.19 35.19 3	5.19 35.19 35.19 (69)													
Pumps and fans gains (Table 5a)														
(70)m= 0 0 0 0 0 0 0 0	0 0 0 0 (70)													
Losses e.g. evaporation (negative values) (Table 5)														
(71)m= -97.53 -97.53 -97.53 -97.53 -97.53 -97.53 -97.53 -97.53 -97.53)7.53 -97.53 -97.53 (71)													
Water heating gains (Table 5)														
(72)m= 42.91 41.55 38.73 34.89 32.4 28.89 25.91 29.73 3	1.09 35.06 39.55 41.56 (72)													
Total internal gains = $(66)m + (67)m + (68)m + (68)m$	9)m + (70)m + (71)m + (72)m													
(73)m= 339.54 338.15 326.3 306.83 286.3 267.18 255.2 259.04 26	69.44 289.04 311.56 329.18 (73)													
6. Solar gains:														
Solar gains are calculated using solar flux from Table 6a and associated equations to conve	ert to the applicable orientation.													
Orientation: Access Factor Area Flux g														
	le 6b Table 6c (W)													
	63 × 0.7 = 173.6 (78)													
	63 × 0.7 = 284.31 (78)													
	63 x 0.7 = 362.16 (78)													
	63 × 0.7 = 409.32 (78)													
	63 × 0.7 = 426.54 (78)													
	63 × 0.7 = 410.49 (78)													
South 0.9x 0.77 x 12.15 x 108.01 x 0.	63 × 0.7 = 401.07 (78)													
South 0.9x 0.77 x 12.15 x 104.89 x 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													

South	0.9x	0.77	X	12.	15	x	10	01.89	x		0.63	x	0.7	=	378.32	(78)
South	0.9x	0.77	x	12.	15	x	8	32.59	x [0.63	x [0.7	=	306.66	(78)
South	0.9x	0.77	x	12.	15	x	5	55.42	x		0.63	x	0.7	=	205.77	(78)
South	0.9x	0.77	x	12.	15	x	4	40.4	x		0.63	x	0.7	_ =	150.01	(78)
	_					٠										
Solar	gains in	watts, ca	alculated	for eacl	h month				(83)m	= St	um(74)m .	(82)m				
(83)m=	173.6	284.31	362.16	409.32	426.54		10.49	401.07	389.4	49	378.32	306.66	205.77	150.01		(83)
Total g	ains – ii	nternal a	nd solar	(84)m =	= (73)m ·	+ (8	33)m	, watts	•				•	•	<u> </u>	
(84)m=	513.14	622.47	688.46	716.15	712.84	67	77.67	656.27	648.	54	647.76	595.7	517.34	479.19		(84)
7. Me	an inter	nal temp	erature	(heating	season)										
			eating p	`		,	area f	from Tal	ole 9.	Th′	1 (°C)				21	(85)
•		J	ains for I			•			,		()					`
	Jan	Feb	Mar	Apr	May	È	Jun	Jul	Au	ıa	Sep	Oct	Nov	Dec		
(86)m=	0.96	0.93	0.89	0.84	0.75	_).62	0.48	0.5	- 	0.67	0.85	0.93	0.96		(86)
) / Malain	:t.a				T4 //-			0 4			. 0-1		1			
	18.92	19.26	ature in 1		20.51	_	w ste 0.81	20.93		$\overline{}$		20.23	19.5	18.87	7	(87)
(87)m=	16.92	19.20	19.66	20.12	20.51		0.61	20.93	20.9	,2	20.74	20.23	19.5	10.07		(07)
Temp		during h	eating p		rest of	_		from Ta	ble 9	, Th	n2 (°C)				_	
(88)m=	20.05	20.05	20.05	20.07	20.07	2	0.09	20.09	20.0	9	20.08	20.07	20.07	20.06		(88)
Utilisa	ation fac	tor for g	ains for r	est of d	welling,	h2,	m (se	ee Table	9a)							
(89)m=	0.95	0.92	0.88	0.81	0.71	C	0.56	0.4	0.42	2	0.61	0.82	0.92	0.96		(89)
Mean	interna	l temper	ature in	the rest	of dwelli	na	T2 (f	ollow ste	ens 3	to 7	' in Tabl	e 9c)	•	•	<u> </u>	
(90)m=	18.15	18.48	18.87	19.33	19.7	Ť	9.96	20.05	20.0		19.91	19.44	18.73	18.11		(90)
, ,			<u> </u>					<u> </u>	<u> </u>	!	f	LA = Livi	ng area ÷ (4) =	0.47	(91)
							` .				A) TO					」 ` ′
			ature (fo			_	-	i	<u> </u>			40.04	10.00	10.47	7	(92)
(92)m=	18.51	18.84	19.24	19.7	20.08		0.36	20.47	20.4		20.3	19.81	19.09	18.47		(92)
(93)m=	18.51	18.84	ne mean 19.24	19.7	20.08	_	re fro 0.36	20.47	20.4		20.3	19.81	19.09	18.47	7	(93)
				19.7	20.08		0.36	20.47	20.4	ю	20.3	19.61	19.09	10.47		(93)
		·	uirement	nnoratuu	ro obtoir	, o d	ot et	on 11 of	Table	n Oh	o tha	t Ti m-	(76)m an	d ro co	loulata	
			or gains (ieu	ai Sit	ер птог	Table	3 31.), 50 illa	ι 11,111=	(10)III ali	u ie-ca	iculate	
	Jan	Feb	Mar	Apr	May	Γ,	Jun	Jul	Au	ıg	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm	:						<u> </u>	· ·		1		_	
(94)m=	0.94	0.91	0.86	0.8	0.71	С).58	0.43	0.4	5	0.63	0.81	0.91	0.95		(94)
Usefu	ıl gains,	hmGm .	W = (94	l)m x (84	4)m	_		•					•		_	
(95)m=	482.37	564.14	595.06	575.24	509.15	39	91.72	284.07	294.	74	407.45	482.66	471.38	454.45		(95)
Month	nly avera	age exte	rnal tem	perature	from Ta	able	e 8							•	_	
(96)m=	4.3	4.9	6.5	8.9	11.7	1	14.6	16.6	16.4	4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	e for mea	an intern	al tempe	erature,	Lm	, W =	=[(39)m	x [(93	3)m-	- (96)m]			_	
(97)m=	1168.34	1141.46	1038.97	864.07	667.76	45	51.19	302.87	316.9	94	488.71	733.73	962.57	1154.27	7	(97)
Space	e heatin	g require	ement fo	r each n	nonth, k	Nh	/mont	th = 0.02	24 x [((97)	m – (95)m] x (4	·1)m		_	
(98)m=	510.36	387.95	330.27	207.96	118.01		0	0	0		0	186.8	353.66	520.67		
									1	Γotal	per year	(kWh/yea	r) = Sum(9	8)15,912	2615.67	(98)
Space	e heatin	g require	ement in	kWh/m²	/year										33.23	(99)
																_

8c. Space co	ooling red	quiremer	nt										
Calculated for	or June, c	July and	August.	See Tal	ole 10b								
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Heat loss ra	te Lm (ca	lculated	using 2	5°C inter	nal temp	oerature	and exte	ernal ten	nperatur	e from T	able 10)		
(100)m= 0	0	0	0	0	736.48	579.78	593.55	0	0	0	0		(100)
Utilisation fa	ctor for lo	ss hm											
(101)m= 0	0	0	0	0	0.8	0.86	0.86	0	0	0	0		(101)
Useful loss,	hmLm (V	Vatts) = ((100)m x	(101)m		_			_	_			
(102)m= 0	0	0	0	0	592.17	500.95	508.15	0	0	0	0		(102)
Gains (solar	gains ca	lculated	for appli	cable we	eather re	gion, se	e Table	10)					
(103)m= 0	0	0	0	0	883.32	856.47	849.08	0	0	0	0		(103)
Space coolii	•				lwelling,	continu	ous (kW	h') = 0.0	24 x [(10	03)m – (102)m]	x (41)m	
set (104)m t		0	0 × (90	0	209.62	264.5	253.65	0	0	0	0		
(104)111= 0					200.02	204.0	200.00		l = Sum(l	=	727.77	(104)
Cooled fraction	าท								cooled	,		121.11	(104)
Intermittency		able 10b)						000104	aroa . (-	1	(100)
(106)m= 0	0	0	0	0	0.25	0.25	0.25	0	0	0	0		
	•		-		-	-	•	Tota	l = Sum(104)	=	0	(106)
Space cooling	g requirer	ment for	month =	(104)m	× (105)	× (106)r	n					i	
(107)m= 0	0	0	0	0	52.41	66.13	63.41	0	0	0	0		
								Total	= Sum(107)	=	181.94	(107)
Space cooling	g requirer	ment in k	kWh/m²/y	/ear				(107)	÷ (4) =			2.31	(108)
8f. Fabric Ene	ergy Effic	iency (ca	alculated	only un	der spec	cial cond	litions, s	ee sectio	on 11)				-
Fabric Energ	gy Efficie	псу						(99)	+ (108) =	=		35.54	(109)

		User D	etails:						
Assessor Name:	John Ashe		Strom	a Num	ber:		STRO	031268	
Software Name:	Stroma FSAP 2012		Softwa				Versio	n: 1.0.5.8	
		Property	Address	: Unit 7 -	- COPPE	ETTS W	OOD, Lo	ndon	
Address :									
1. Overall dwelling dime	nsions:	Ara	n (m 2)		Av. Ua	iaht/m)		Valuma/m³	`
Ground floor			a(m²) 78.72	(1a) x		ight(m) :.66	(2a) =	Volume(m³) (3a)
Total floor area TFA = (1a	a)+(1b)+(1c)+(1d)+(1e)+(1			(4)]` ′		` ′
Dwelling volume		<u> </u>)+(3c)+(3c	d)+(3e)+	(3n) =	209.4	(5)
2. Ventilation rate:									
	main seconda heating heating	ry	other		total			m³ per hou	r
Number of chimneys		T + F	0	-	0	X	40 =	0	(6a)
Number of open flues	0 + 0	-	0	Ī = Ī	0	x	20 =	0	(6b)
Number of intermittent fa	ns				0	x	10 =	0	(7a)
Number of passive vents				Ī	0	x	10 =	0	(7b)
Number of flueless gas fi	res			Ī	0	X :	40 =	0	(7c)
				_			A : l.		_
				_			Air ch	anges per ho	_
·	ys, flues and fans = (6a)+(6b)+(een carried out or is intended, proced			continue fr	0		÷ (5) =	0	(8)
Number of storeys in the		50 to (11), t	ourer wise (Jonanae n	om (9) to	(10)		0	(9)
Additional infiltration	3 ()					[(9)	-1]x0.1 =	0	(10)
Structural infiltration: 0	.25 for steel or timber frame o	r 0.35 fo	r masoni	ry constr	ruction			0	(11)
•••	resent, use the value corresponding to	o the great	ter wall are	a (after					_
deducting areas of openir If suspended wooden f	loor, enter 0.2 (unsealed) or ().1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, en	ter 0.05, else enter 0	`	,.					0	(13)
Percentage of windows	s and doors draught stripped							0	(14)
Window infiltration			0.25 - [0.2	! x (14) ÷ 1	00] =			0	(15)
Infiltration rate			(8) + (10)	+ (11) + (1	12) + (13)	+ (15) =		0	(16)
Air permeability value,	q50, expressed in cubic metr	es per ho	our per s	quare m	etre of e	envelope	area	5	(17)
If based on air permeabil	ity value, then $(18) = [(17) \div 20] +$	(8), otherwi	ise (18) = ((16)				0.25	(18)
	s if a pressurisation test has been do	ne or a de	gree air pe	rmeability	is being u	sed			_
Number of sides sheltere	d		(20) = 1 -	[0 075 v (4	10)1 –			0	(19)
Shelter factor	ing aboltor footor		$(20) = 1^{-2}$ (21) = (18)		19)] =			1	(20)
Infiltration rate incorporat			(21) = (10))				0.25	(21)
Infiltration rate modified for	Mar Apr May Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind sp		1				1		I	
(22)m= 5.1 5	4.9 4.4 4.3 3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a) = (24	2)m : 4	•	•	•	•	-		•	
Wind Factor $(22a)m = (22a)m = 1.27$ 1.25	2)m ÷ 4 1.23	0.95	0.92	1	1.08	1.12	1.18		
			1	<u> </u>		<u> </u>	L v	I	

0.32	0.31	0.31	0.28	0.27	0.24	0.24	0.23	0.25	0.27	0.28	0.29		
alculate effe		•	rate for t	he appli	cable ca	se		ļ.			<u> </u>	<u> </u>	
If mechanic												0.5	(2
If exhaust air h		•	•	, ,	,	. ,		,	o) = (23a)			0.5	(2
If balanced wit		•	•	Ū		`		,				77.35	(2
a) If balanc	1					<u> </u>	- 	í `	 		- ` 	÷ 100] ı	
4a)m= 0.43	0.43	0.42	0.39	0.38	0.35	0.35	0.34	0.36	0.38	0.39	0.41		(2
b) If balanc							 	ŕ	r `			1	
4b)m= 0	0	0	0	0	0	0	0	0	0	0	0		(2
c) If whole I				•	•				- (00)				
	m < 0.5 ×	<u> </u>		, ,	<u> </u>	· ·	ŕ	r i	· ` ·		1 .	1	15
4c)m= 0	0	0	0	0	0	0	0	0	0	0	0		(2
d) If natural	ventilatio m = 1, the			•	•				0.51				
4d)m= 0	T 0	0	0	0	0	0	0.0 1 [(2	0	0.01	0	0		(2
Effective air	r change	rate - er	ter (24a	or (24h) or (24)	c) or (24	d) in hov	(25)					·
25)m= 0.43	0.43	0.42	0.39	0.38	0.35	0.35	0.34	0.36	0.38	0.39	0.41		(2
5	1 00	J	0.00	0.00	0.00	0.00	1 0.0 .	1 0.00	0.00	0.00	1		`
B. Heat losse	es and he	at loss p	paramete	er:									
LEMENT	Gros	_	Openin		Net Ar		U-valı W/m2		AXU	()	k-value		A X k
indows	area	(1112)	m	-	A ,r		vv/111∠ +(0.9)/1]/		(W/ł	\) 	kJ/m²-l	^ r	kJ/K
					12.15	=			10.56	亅 ,			(2
oor 					78.72	<u>x</u>	0.13	= !	10.2336			┥	(2
/alls	27.3		12.15	5	15.19) X	0.15	=	2.28				(2
otal area of	elements	, m²			106.0	6							(3
for windows and include the are						ated using	g formula 1	/[(1/U-valu	ле)+0.04] а	s given in	paragraph	3.2	
abric heat lo				s and part	illions		(26)(30)) + (32) =				23.07	(3
eat capacity		•	O)				, , , ,		(30) + (32	2) + (32a).	(32e) =	9570.6	(3
hermal mass	`	,	P = Cm ÷	. TFA) ir	n k.l/m²K				ative Value:	, , ,	()	100	(3
or design asses	•	`		,			ecisely the				able 1f	100	(
ŭ													
an be used inste	es : S (L	x Y) cal-	culated i	ısing Ap	pendix ł	<						15.91	(3
	` `	λ . , σα.	odiatod t	0 1									
nermal bridg	al bridging	,		• .	1)								
nermal bridg details of therm otal fabric he	eat loss	are not kn	own (36) =	= 0.05 x (3	1)			(33) +	- (36) =			38.98	(3
hermal bridg details of therm otal fabric he entilation he	eat loss	are not kn	own (36) =	= 0.05 x (3	1)				- (36) = = 0.33 × (3	25)m x (5))	38.98	(3
nermal bridg details of therm otal fabric he	eat loss	are not kn	own (36) =	= 0.05 x (3	1) Jun	Jul	Aug			25)m x (5) Nov	Dec	38.98	(3
nermal bridg details of therm otal fabric he entilation he Jan	eat loss ca	are not kn	own (36) =	: 0.05 x (3		Jul 24.24	Aug 23.81	(38)m	$=0.33\times(2$, , ,	1	38.98	
nermal bridgedetails of thermotal fabric he entilation he Jan 29.85	eat loss cat	alculated Mar 28.99	own (36) = monthly Apr	.: 0.05 x (3 / May	Jun			(38)m Sep 25.1	0.33 × (2	Nov 27.26	Dec	38.98	
nermal bridg details of therm otal fabric he entilation he Jan 29.85 eat transfer	eat loss cat	alculated Mar 28.99	own (36) = monthly Apr	.: 0.05 x (3 / May	Jun			(38)m Sep 25.1	0.33 × (2) Oct 26.4	Nov 27.26	Dec	38.98	
nermal bridgedetails of thermotal fabric herentilation herentilation herentilation because 29.85 eat transfer 9)m= 68.83	pal bridging eat loss at loss care Feb 29.42 coefficier 68.4	alculated Mar 28.99 nt, W/K 67.96	own (36) = I monthly Apr 26.83		Jun 24.24	24.24	23.81	(38)m Sep 25.1 (39)m 64.08	Oct 26.4	Nov 27.26 38)m 66.24 Sum(39) ₁	Dec 28.12	38.98 65.7	(3
hermal bridg details of therm otal fabric he entilation he Jan 29.85 eat transfer	pal bridging eat loss at loss care Feb 29.42 coefficier 68.4	alculated Mar 28.99 nt, W/K 67.96	own (36) = I monthly Apr 26.83		Jun 24.24	24.24	23.81	(38)m Sep 25.1 (39)m 64.08	Oct 26.4 1 = (37) + (37) + (37)	Nov 27.26 38)m 66.24 Sum(39) ₁	Dec 28.12		(3

Number of days in month (Table 1a)

ramo	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
()		-						<u> </u>						
4. Wa	iter heat	ing ener	gy requi	rement:								kWh/ye	ear:	
if TF		N = 1		[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (1	ΓFA -13.		44		(42)
	A £ 13.9	,	ater usac	na in litra	s nar da	y Vd av	orano –	(25 x N)	+ 36			44		(42)
Reduce	the annua	l average	hot water	usage by	5% if the a		designed t	to achieve		se target o		.11		(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate					,	ctor from 7				l	l			
(44)m=	101.32	97.63	93.95	90.26	86.58	82.89	82.89	86.58	90.26	93.95	97.63	101.32		
_							_	,			m(44) ₁₁₂ =		1105.27	(44)
Energy (content of	hot water	used - cal	culated mo	onthly = 4 .	190 x Vd,r	n x nm x E) kWh/mon	ith (see Ta	ables 1b, 1	c, 1d)	ı	
(45)m=	150.25	131.41	135.6	118.22	113.44	97.89	90.71	104.09	105.33	122.75	133.99	145.51		¬
If instant	taneous w	ater heatii	na at point	of use (no	hot water	r storage).	enter () in	boxes (46)		Total = Su	m(45) ₁₁₂ =	=	1449.18	(45)
(46)m=		19.71	20.34	17.73	17.02	14.68	13.61	15.61	15.8	18.41	20.1	21.83		(46)
` '	storage		20.34	17.73	17.02	14.00	13.01	15.61	10.0	10.41	20.1	21.03		(40)
	•		includin	g any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
If comr	munity h	eating a	nd no ta	nk in dw	elling, e	nter 110	litres in	(47)					l	
Otherw	vise if no	stored	hot wate	er (this in	ıcludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in (47)			
	storage			(- /1.14/1	/.l- \						l	
•					or is kno	wn (kWh	n/day):					0		(48)
•			m Table									0		(49)
•			storage	-		or is not		(48) x (49)) =		1	10		(50)
•				-		h/litre/da					0.	02		(51)
If comr	munity h	eating s	ee secti	on 4.3										
	e factor										1.	03		(52)
•			m Table								0	.6		(53)
•			storage	, kWh/ye	ear			(47) x (51)	x (52) x (53) =	-	03		(54)
	(50) or (, ,	•					((50) (==> (44)		1.	03		(55)
			culated f					((56)m = (ı		I	
(56)m=	32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01	iv I I	(56)
							· · · · ·				H11) is fro		ıx n	
(57)m=	32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(57)
Primar	y circuit	loss (an	inual) fro	m Table	3							0		(58)
	•				,	•	. ,	65 × (41)						
•								ng and a			<u> </u>	00.00	[(EO)
(59)m=	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)
Combi	loss cal		for each		(61)m =	(60) ÷ 36	65 × (41))m	-				ı	
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)

Total he	at requ	ired for	water he	eating ca	alculated	l fo	r each	month	(62)	m =	0.85 × (45)m	+ (46)m +	(57)m	+ (59)m + (61)m	
(62)m=	205.53	181.34	190.88	171.71	168.71	15	51.38	145.98	159	.36	158.82	178.0	3 187.49	200.7	8		(62)
Solar DHV	V input ca	alculated	using App	endix G oı	Appendix	Н((negative	e quantity	v) (ent	er '0'	if no solar	contrib	ution to wate	er heatin	ng)		
(add add	ditional	lines if	FGHRS	and/or \	VWHRS	ap	plies,	see Ap	pend	lix G	S)			_			
(63)m=	0	0	0	0	0		0	0	0		0	0	0	0			(63)
Output f	rom wa	ater heat	ter														
(64)m=	205.53	181.34	190.88	171.71	168.71	15	51.38	145.98	159	.36	158.82	178.0	3 187.49	200.7	8		_
										Outp	ut from wa	ater hea	ter (annual) ₁	12		2100.02	(64)
Heat gai	ins fron	n water	heating,	kWh/m	onth 0.2	5 ´	[0.85 ×	د (45)m	+ (6	1)m] + 0.8 x	: [(46)ı	m + (57)m	+ (59))m]		
(65)m=	94.18	83.64	89.31	82.1	81.94	7	5.34	74.38	78.	83	77.82	85.04	87.35	92.6			(65)
includ	e (57)n	n in calc	culation of	of (65)m	only if c	ylir	nder is	in the c	llewb	ing o	or hot wa	ater is	from com	munity	/ he	ating	
5. Inte	rnal gai	ins (see	Table 5	and 5a):												
Metabol	ic gains	s (Table	5). Wat	ts													
	Jan	Feb	Mar	Apr	May		Jun	Jul	A	ug	Sep	Oct	Nov	De	С		
(66)m=	121.91	121.91	121.91	121.91	121.91	12	21.91	121.91	121	.91	121.91	121.9	1 121.91	121.9	1		(66)
Lighting	gains (calculat	ted in Ap	pendix	L, equat	ion	L9 or	L9a), a	lso s	ee T	Table 5		•				
(67)m=	20.31	18.04	14.67	11.1	8.3	7	7.01	7.57	9.8	34	13.21	16.77	19.58	20.87	7		(67)
Appliand	ces gair	ns (calc	ulated in	Append	dix L, eq	uat	ion L1	3 or L1:	3a), a	also	see Tal	ole 5					
· · · –	216.74	218.99	213.33	201.26	186.03			162.15	159		165.57	177.6	192.87	207.1	8		(68)
L Cooking	gains	(calcula	ted in A	ppendix	L. egua	tior	L15 o	r L15a)	. als	o se	e Table	5	1	!			
Ě	35.19	35.19	35.19	35.19	35.19	_	5.19	35.19	35.		35.19	35.19	35.19	35.19	9		(69)
Pumps a	and fan	s gains	(Table 5	 Ба)							!		_!	<u> </u>	_		
(70)m=	0	0	0	0	0		0	0	0		0	0	0	0			(70)
Losses (e a eva	aporatio	n (negat	ive valu	es) (Tah	le :	 5)							l			
	-97.53	-97.53	-97.53	-97.53	-97.53	_		-97.53	-97.	.53	-97.53	-97.53	3 -97.53	-97.5	3		(71)
Water h		nains (T	able 5)								!			!			
(72)m=				114.03	110.13	10	04.64	99.97	105	.95	108.08	114.3	121.32	124.4	7		(72)
Total in	-												(71)m + (72)				
	423.21	421.06	407.6	385.97	364.03	34	``	329.27	335	'	346.43	368.2	`	412.0	9		(73)
6. Sola																	
			using sola	r flux from	Table 6a	and	associa	ted equa	tions	to coi	nvert to the	e applic	able orientat	ion.			
Orientat	ion: A	ccess F	actor	Area			Flux	,			g_		FF			Gains	
	T	able 6d		m²			Tabl	le 6a		Ta	able 6b		Table 6c			(W)	
South	0.9x	0.77	X	12.	15	x	46	.75	x		0.63	x	0.7	-	- F	173.6	(78)
South	0.9x	0.77	X	12.	15	x	76	5.57	x		0.63	×	0.7		- F	284.31	(78)
South	0.9x	0.77	x	12.	15	x	97	7.53	х		0.63	٦ ×	0.7	=	- F	362.16] (78)
South	0.9x	0.77	x	12.	15	x	110	0.23	x		0.63	×	0.7		-	409.32	(78)
South	0.9x	0.77	x	12.		x		4.87	x		0.63	×	0.7	= .	- F	426.54	(78)
South	0.9x	0.77	x	12.		x		0.55	x		0.63	×	0.7	-	₌፟፟	410.49	(78)
South	0.9x	0.77	x	12.		x		3.01	x		0.63	×	0.7	-	₌┝	401.07	(78)
South	0.9x	0.77	X	12.		x		4.89	x		0.63	ا ×	0.7	╡,	₌┝	389.49] (78)
		****							l l			_			_		」 ` ′

South	0.9x	0.77	X	12.	15	x	10	01.89	x [0.63	X	0.7	=	378.32	(78)
South	0.9x	0.77	Х	12.	15	x	8	2.59	_ x [0.63	X	0.7	=	306.66	(78)
South	0.9x	0.77	Х	12.	15	x	5	5.42	x		0.63	x	0.7	=	205.77	(78)
South	0.9x	0.77	x	12.	15	x	4	10.4	x		0.63	x	0.7	_ =	150.01	(78)
	_					-			•			_				_
Solar g	ains in	watts, ca	alculated	for eacl	n month				(83)m	= Sı	um(74)m .	(82)m				
(83)m=	173.6	284.31	362.16	409.32	426.54	41	0.49	401.07	389.4	49	378.32	306.6	205.77	150.01	7	(83)
Total g	ains – ii	nternal a	nd solar	(84)m =	(73)m -	+ (8	3)m ,	watts	•				•	•	-	
(84)m=	596.81	705.37	769.77	795.29	790.57	75	3.42	730.34	724.7	76	724.75	674.9	3 599.11	562.1	7	(84)
7. Me	an inter	nal temp	erature	(heating	season)										
			eating p	`		,	area f	rom Tab	ole 9.	Th1	1 (°C)				21	(85)
•		J	ains for I			•			,		()					`
	Jan	Feb	Mar	Apr	May	È	Jun	Jul	Au	ıa	Sep	Oct	Nov	Dec	7	
(86)m=	0.93	0.89	0.84	0.76	0.66	-	0.5	0.37	0.39	Ť	0.56	0.77	0.89	0.94	1	(86)
NA				l	T4 /f-					- - -	. 0-1				_	
		19.82	ature in		20.77			20.98		-		20.58	20.02	19.49	7	(87)
(87)m=	19.51	19.62	20.15	20.52	20.77		0.93	20.96	20.9	0	20.9	20.50	20.02	19.49		(01)
Temp		during h	eating p	eriods ir	rest of	_	Ť	from Ta	ble 9	, Th	n2 (°C)				7	
(88)m=	20.19	20.19	20.2	20.22	20.23	20	0.25	20.25	20.2	6	20.24	20.23	20.22	20.21		(88)
Utilisa	ation fac	tor for g	ains for ı	est of d	welling,	h2,r	m (se	e Table	9a)							
(89)m=	0.93	0.88	0.83	0.74	0.62	0	.45	0.31	0.33	3	0.51	0.74	0.88	0.93	7	(89)
Mean	interna	l temper	ature in	the rest	of dwelli	na .	T2 (fc	ollow ste	ens 3	to 7	' in Tahl	e 9c)	•	•	-	
(90)m=	18.2	18.63	19.11	19.63	19.97	Ť	0.19	20.24	20.2		20.14	19.73	18.95	18.17	7	(90)
` '						<u> </u>			<u> </u>	!	f	LA = Li	<u> </u>	4) =	0.47	(91)
	. ,						\ (1				A) TO					」 ` ′
			ature (fo			Ť				-		20.40	10.45	10.70	٦	(92)
(92)m=	18.81	19.19	19.6	20.05	20.34		0.54	20.59	20.5		20.5	20.13		18.79	J	(92)
(93)m=	18.81	19.19	ne mean	20.05	20.34	_	7.54	20.59	20.5	$\overline{}$	20.5	20.13	1	18.79	7	(93)
				20.05	20.34		J.54	20.59	20.5	9	20.5	20.13	19.45	16.79		(93)
			uirement	mporatiu	o obtoin	od	at etc	n 11 of	Table	ο Oh	oo tha	t Ti m	=(76)m an	d ro col	culato	
			or gains i			leu	al Sie	p ii oi	Table	<i>3</i> 30), 50 illa	L 11,111:	=(10)111 a1	iu ie-cai	Culate	
	Jan	Feb	Mar	Apr	May		Jun	Jul	Au	ıg	Sep	Oct	Nov	Dec	7	
Utilisa	ation fac	tor for g	ains, hm	:		!				<u> </u>	•			•	_	
(94)m=	0.91	0.86	0.81	0.73	0.62	0	.47	0.34	0.35	5	0.52	0.73	0.86	0.92	7	(94)
Usefu	ıl gains,	hmGm .	W = (94	1)m x (84	4)m								•		_	
(95)m=	542.04	609.81	624.05	581.39	493.27	35	5.51	247.01	256.9	94	379.73	494.2	518.03	516.41	7	(95)
Month	nly avera	age exte	rnal tem	perature	from Ta	able	8								_	
(96)m=	4.3	4.9	6.5	8.9	11.7	1.	4.6	16.6	16.4	4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	e for mea	an intern	al tempe	erature,	Lm	, W =	=[(39)m :	x [(93)m-	- (96)m]		_	_	
(97)m=	999	977.19	890.09	733.46	565.14	37	75.3	251.95	262.7	77	409.91	623.0	818.04	978.9		(97)
Space	e heatin	g require	ement fo	r each n	nonth, k\	Nh/	mont	h = 0.02	24 x [(97)	m – (95)m] x	41)m		_	
(98)m=	339.98	246.88	197.93	109.49	53.47		0	0	0		0	95.89	216	344.1		_
									Т	otal	per year	(kWh/ye	ar) = Sum(9	98)15,912 =	1603.75	(98)
Space	e heatin	g require	ement in	kWh/m²	/year										20.37	(99)
																_

9b. Energy requirements – Community heating scheme				
This part is used for space heating, space cooling or water heating Fraction of space heat from secondary/supplementary heating (Tab			0	(301)
Fraction of space heat from community system 1 – (301) =		ĺ	1	(302)
The community scheme may obtain heat from several sources. The procedure allow includes boilers, heat pumps, geothermal and waste heat from power stations. See		o four other heat sources; th	he latter	<u> </u>
Fraction of heat from Community boilers			0.4	(303a)
Fraction of community heat from heat source 2		l	0.4	(303b)
Fraction of total space heat from Community boilers		(302) x (303a) =	0.4	(304a)
Fraction of total space heat from community heat source 2		(302) x (303b) =	0.4	(304b)
Factor for control and charging method (Table 4c(3)) for community	heating system		1	(305)
Distribution loss factor (Table 12c) for community heating system			1.05	(306)
Space heating Annual space heating requirement		[kWh/yea 1603.75	r
Space heat from Community boilers	(98) x (304a)	x (305) x (306) =	673.57	(307a)
Space heat from heat source 2	(98) x (304b)	x (305) x (306) =	673.57	(307b)
Efficiency of secondary/supplementary heating system in % (from	Table 4a or Appe	endix E)	0	(308
Space heating requirement from secondary/supplementary system	(98) x (301) x	(100 ÷ (308) =	0	(309)
Water heating Annual water heating requirement If DHW from community scheme:		[2100.02	
Water heat from Community boilers	(64) x (303a)	x (305) x (306) =	882.01	(310a
Water heat from heat source 2	(64) x (303b)	x (305) x (306) =	882.01	(310b)
Electricity used for heat distribution	0.01 × [(307a)(30	07e) + (310a)(310e)] =	31.11	(313)
Cooling System Energy Efficiency Ratio			0	(314)
Space cooling (if there is a fixed cooling system, if not enter 0)	= (107) ÷ (31	4) =	0	(315)
Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input from out	side	[287.39	(330a)
warm air heating system fans			0	(330b
pump for solar water heating			0	(330g
Total electricity for the above, kWh/year	=(330a) + (33	80b) + (330g) =	287.39	(331)
Energy for lighting (calculated in Appendix L)			358.61	(332)
Electricity generated by PVs (Appendix M) (negative quantity)			-768.62	(333)
Electricity generated by wind turbine (Appendix M) (negative quant	ity)		0	(334)
12b. CO2 Emissions – Community heating scheme				
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year	
CO2 from other sources of space and water heating (not CHP) Efficiency of heat source 1 (%) If there is CHP using two	o fuels repeat (363) t	to (366) for the second fuel	89	(367a)

Efficiency of heat source 2 (%)	If there is CHP using two fuels repeat (363) to (363)	366) for the second f	uel	89	(367b)
CO2 associated with heat source 1	[(307b)+(310b)] x 100 ÷ (367b) x	0.22	=	377.53	(367)
CO2 associated with heat source 2	[(307b)+(310b)] x 100 ÷ (367b) x	0.22	=	377.53	(368)
Electrical energy for heat distribution	[(313) x	0.52	=	16.15	(372)
Total CO2 associated with community system	(363)(366) + (368)(372))	=	771.22	(373)
CO2 associated with space heating (seconda	ry) (309) x	0	=	0	(374)
CO2 associated with water from immersion he	eater or instantaneous heater (312) x	0.22	=	0	(375)
Total CO2 associated with space and water h	eating (373) + (374) + (375) =			771.22	(376)
CO2 associated with electricity for pumps and	fans within dwelling (331)) x	0.52	=	149.16	(378)
CO2 associated with electricity for lighting	(332))) x	0.52	=	186.12	(379)
Energy saving/generation technologies (333)	to (334) as applicable				7
Item 1		0.52 x 0.01	=	-398.91	(380)
Total CO2, kg/year sum o	of (376)(382) =			707.57	(383)
Dwelling CO2 Emission Rate (383)	÷ (4) =			8.99	(384)
El rating (section 14)				92.34	(385)

		User D	etails:						
Assessor Name:	John Ashe		Strom	a Num	her:		STRO	031268	
Software Name:	Stroma FSAP 2012		Softwa					n: 1.0.5.8	
		Property i	Address	: Unit 7 -	COPPE	ETTS W	OOD, Lo	ndon	
Address :									
1. Overall dwelling dime	ensions:								
Ground floor			a(m²)	(1a) v		ight(m)	7(20)	Volume(m³	<u>-</u>
			8.72	(1a) x	2	.66	(2a) =	209.4	(3a)
Total floor area TFA = (1	a)+(1b)+(1c)+(1d)+(1e)+(1	n)	8.72	(4)					
Dwelling volume				(3a)+(3b)+(3c)+(3c	d)+(3e)+	(3n) =	209.4	(5)
2. Ventilation rate:									
	main seconda heating heating	iry 	other	_	total			m³ per hou	r
Number of chimneys	0 + 0	+	0	=	0	X	40 =	0	(6a)
Number of open flues	0 + 0] + [0] = [0	x :	20 =	0	(6b)
Number of intermittent fa	ns			Γ	3	X	10 =	30	(7a)
Number of passive vents	.			Ī	0	x -	10 =	0	(7b)
Number of flueless gas fi	res			Ē	0	x	40 =	0	(7c)
				_					
							Air ch	nanges per ho	our
·	ys, flues and fans = $(6a)+(6b)+$				30		÷ (5) =	0.14	(8)
If a pressurisation test has b Number of storeys in the	peen carried out or is intended, proce	ed to (17), o	otherwise (continue fr	om (9) to	(16)			— (0)
Additional infiltration	ne aweiling (115)					[(9)]	-1]x0.1 =	0	(9) (10)
	.25 for steel or timber frame of	or 0.35 for	r masoni	y constr	uction	1(0)		0	(11)
•••	resent, use the value corresponding	to the great	er wall are	a (after					
deducting areas of openii	ngs); if equal user 0.35 floor, enter 0.2 (unsealed) or () 1 (seale	ad) else	enter ()				0	(12)
If no draught lobby, en	,	7.1 (Joure	, cioc	cinci o				0	(13)
• ,	s and doors draught stripped							0	(14)
Window infiltration			0.25 - [0.2	x (14) ÷ 1	00] =			0	(15)
Infiltration rate			(8) + (10)	+ (11) + (1	12) + (13)	+ (15) =		0	(16)
• • •	q50, expressed in cubic metr	•	•	•	etre of e	envelope	area	5	(17)
•	ity value, then $(18) = [(17) \div 20] +$							0.39	(18)
Air permeability value applie Number of sides sheltere	es if a pressurisation test has been do	one or a deg	gree air pe	rmeability	is being u	sed			(19)
Shelter factor	cu		(20) = 1 -	[0.0 75 x (1	19)] =			0	-(20)
Infiltration rate incorporat	ting shelter factor		(21) = (18) x (20) =				0.39	(21)
Infiltration rate modified f	or monthly wind speed								
Jan Feb	Mar Apr May Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind sp	eed from Table 7								
(22)m= 5.1 5	4.9 4.4 4.3 3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (2	2)m <i>÷ 4</i>								
	1.23 1.1 1.08 0.95	0.95	0.92	1	1.08	1.12	1.18]	
, ,,	1 1 1 1 1 1 1 1 1 1	1		•				J	

aujusteu ii iiit	ration rat	e (allowi	ng for sh	nelter an	d wind s	speed) =	(21a) x	(22a)m					
0.5	0.49	0.48	0.43	0.42	0.37	0.37	0.36	0.39	0.42	0.44	0.46]	
Calculate effe		-	rate for t	he appli	cable ca	se	•	•	•		•	•	 .
If mechanic			andiv NL (O	ah) (aa	s) Em. /a	accetion (I	\ E\\	muiaa (22h	·) (22a)			0	(23
If exhaust air h		0		, ,	,	. `	,, .	,)) = (23a)			0	(23
If balanced with		•	•	ŭ		`		,				0	(23
a) If balanc		1					, 	ŕ	, 		1 ` ´) ÷ 100] 1	(0.4
24a)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24
b) If balanc						- 	, 	í `	, ´ ` `		1	1	
24b)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24
c) If whole I				•	•								
<u> </u>	m < 0.5 >	` 	<u>`</u>	ŕ		<u> </u>	r ` ` 	ŕ	· ` ·	<u> </u>	ı	1	
24c)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24
d) If natural if (22b)	ventilation m = 1, th			•	•				0.5]			_	
24d)m= 0.63	0.62	0.62	0.59	0.59	0.57	0.57	0.57	0.58	0.59	0.6	0.61		(24
Effective air	r change	rate - er	nter (24a) or (24k	o) or (24	c) or (24	d) in bo	(25)					
25)m= 0.63	0.62	0.62	0.59	0.59	0.57	0.57	0.57	0.58	0.59	0.6	0.61		(25
3. Heat losse	oo ond be	oot loog i	aramata	or:									
	_				Net Ar	200	U-val	10	AXU		k-value	- /	λΧk
ELEMENT	Gros area		Openin m		A,r		W/m2		(W/I	<)	kJ/m²-l		J/K
Vindows					12.15	₅ x1	/[1/(1.4)+	0.04] =	16.11				(27
Floor					78.72	<u> </u>	0.13	i	10.2336			\neg	(28
Nalls	27.3	34	12.1	5	15.19) x	0.18	= :	2.73	=			(29
Total area of					106.0	=	00						\ (31
for windows and			effective wi	ndow U-va			a formula 1	/[(1/U-valı	ue)+0.041 a	ıs aiven in	paragraph	132	(01
** include the are							,	. (,	J	, parragraph		
abric heat lo	ss, W/K	= S (A x	U)				(26)(30	+ (32) =				29.08	(33
Heat capacity	Cm = S	(Axk)						((28).	(30) + (32	2) + (32a).	(32e) =	9570.6	(34
Thermal mass	s parame	eter (TMF	P = Cm ÷	- TFA) ir	n kJ/m²K			Indica	tive Value	Medium		250	(35
or design asses	sments wh	ere the de	tails of the	construct	ion are no	t known pi	ecisely the	e indicative	e values of	TMP in T	able 1f		
can be used inste													
Thermal bridg	jes : S (L	x Y) cal	culated ı	using Ap	pendix l	<						5.3	(36
f details of therm		are not kn	own (36) =	= 0.05 x (3	11)			(0.0)	(0.0)				 .
Fotal fabric he									(36) =	> /-		34.38	(37
/entilation he	1	1			l .		.		= 0.33 × (1	1	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		(00
38)m= 43.24	42.9	42.57	41.02	40.73	39.37	39.37	39.12	39.89	40.73	41.31	41.93	J	(38
Heat transfer	coefficie	nt, W/K						(39)m	= (37) + (3	38)m			
39)m= 77.62	77.28	76.95	75.39	75.1	73.75	73.75	73.5	74.27	75.1	75.69	76.31		
last lase	om ct - 4	II D\ \ \	/ma 21.4						Average =		₁₂ /12=	75.39	(39
Heat loss par	- ·	- 		0.05	001	001	T 0.00		= (39)m ÷		0.07	1	
40)m= 0.99	0.98	0.98	0.96	0.95	0.94	0.94	0.93	0.94	0.95	0.96	0.97	_	
									Average =	Sum(40) ₁	12 /12=	0.96	(4

Number of days in month (Table 1a)

Numbe	er or day	s in mor	าเก (Tab	ie ra)		1	1	1					1	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
													•	
1 Wa	ter heat	ing ener	gy requi	rement:								kWh/ye	aar:	
T. VVC	itor ricat	ing crici	gy requi	TOTTICTIL.								ICVVII/ y C	Jar.	
	ed occu											44		(42)
			+ 1.76 x	[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (ΓFA -13.	9)		•	
	A £ 13.9	-	ator usac	ne in litre	se ner de	y Vd av	erade –	(25 x N)	+ 36		00	4.4		(42)
									a water us	se target o		.11		(43)
not more	e that 125	litres per p	person per	day (all w	ater use, l	hot and co	ld)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	er usage ir	litres per	day for ea			ctor from	Table 1c x						l	
(44)m=	101.32	97.63	93.95	90.26	86.58	82.89	82.89	86.58	90.26	93.95	97.63	101.32		
,	I						l .	l		I Total = Su	m(44) ₁₁₂ =		1105.27	(44)
Energy o	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	m x nm x E	OTm / 3600) kWh/mon					」 ` `
(45)m=	150.25	131.41	135.6	118.22	113.44	97.89	90.71	104.09	105.33	122.75	133.99	145.51		
, ,	ļ.					<u> </u>	<u> </u>	<u> </u>		I Total = Sui	m(45) ₁₁₂ =		1449.18	(45)
If instant	taneous w	ater heatii	ng at point	of use (no	hot water	storage),	enter 0 in	boxes (46			, ,	ļ		_
(46)m=	22.54	19.71	20.34	17.73	17.02	14.68	13.61	15.61	15.8	18.41	20.1	21.83		(46)
Water	storage	loss:				<u>I</u>	ļ.	ļ.	ļ.				l	
Storag	e volum	e (litres)	includin	ig any so	olar or W	/WHRS	storage	within sa	ame ves	sel		150		(47)
If comr	munity h	eating a	nd no ta	nk in dw	elling, e	nter 110	litres in	(47)						
Otherw	vise if no	stored	hot wate	er (this in	ıcludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in (47)			
	storage													
a) If m	anufacti	urer's de	eclared l	oss facto	or is kno	wn (kWł	n/day):				1.	39		(48)
Tempe	rature fa	actor fro	m Table	2b							0.	54		(49)
Energy	lost fro	m water	storage	, kWh/ye	ear			(48) x (49)) =		0.	75		(50)
				ylinder l										
				om Tabl	e 2 (kW	h/litre/da	ay)				(0		(51)
	nunity n e factor i	•	ee section	on 4.3									1	(52)
			m Table	2h								0		(52) (53)
								(47) v (E4)) v (EQ) v (I	E2)				. ,
•	(50) or (•	, kWh/ye	zai			(47) X (51)) x (52) x (55) =	-	0		(54) (55)
	. , .	, ,	•	or oach	month			((EC)m - (EE) ~ (44);	~	0.	75		(33)
				or each					55) × (41)ı				ı	
(56)m=	23.33	21.07	23.33	22.58	23.33	22.58	23.33	23.33	22.58	23.33	22.58	23.33		(56)
If cylinde	er contains	dedicated	d solar sto	rage, (57)ı	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	23.33	21.07	23.33	22.58	23.33	22.58	23.33	23.33	22.58	23.33	22.58	23.33		(57)
Primar	v circuit	loss (an	nual) fro	m Table	9 3							0		(58)
	•	•	•			59)m = ((58) ÷ 36	65 × (41)	m				ı	
	•				,	•	` '	, ,	cylinde	r thermo	stat)			
(59)m=	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)
Combi	ادع دعا	culated	for each	month /	(61)m –	(60) ± 30	65 × (41)m	•	•			•	
(61)m=	0	0	0	0	0	00) + 30	0	0	0	0	0	0		(61)
(01)111=	Ŭ	U	U	U			L	L	L		Ŭ	U		(01)

Total h	eat requ	uired for	water	he	ating ca	alculate	d fo	or eacl	h month	(62)	m =	0.85 × (45)m	+ (46)m	ı + (5	7)m +	(59)m + (61)m	
(62)m=	196.84	173.49	182.2		163.31	160.03	1	42.98	137.3	150	.68	150.42	169.3	35 179.0	08	192.1		(62)
Solar DF	lW input o	calculated	using A	ope	ndix G or	Append	хH	(negati	ve quantity	/) (ent	ter '0'	if no solai	r contri	oution to v	vater h	neating)	'	
(add ad	dditiona	l lines if	FGHR	Sa	and/or V	VWHR:	S a	pplies	, see Ap	pend	dix C	3)					_	
(63)m=	0	0	0		0	0		0	0	C)	0	0	0		0		(63)
Output	from wa	ater hea	ter															
(64)m=	196.84	173.49	182.2		163.31	160.03	1	42.98	137.3	150	.68	150.42	169.3	35 179.0	08	192.1		
•									-	-	Outp	out from wa	ater he	ater (annu	al) ₁₁₂		1997.8	(64)
Heat g	ains froi	m water	heatin	g, l	kWh/mo	onth 0.2	25 ´	[0.85	× (45)m	+ (6	31)m	n] + 0.8 x	(46)	m + (57)m +	(59)m	1	
(65)m=	87.23	77.36	82.36		75.38	74.99	1	68.62	67.44	71.	88	71.1	78.0	9 80.6	3 8	85.66		(65)
inclu	de (57)ı	m in cald	culation	۱ 0	f (65)m	only if	cyli	nder is	s in the o	llewb	ling	or hot w	ater is	from co	omm	unity h	eating	
5. Int	ernal ga	ains (see	Table	5	and 5a):												
		s (Table			·													
Wiotabe	Jan	Feb	Mai	Т	Apr	May	Τ	Jun	Jul	А	ug	Sep	Oc	t No	ov	Dec	1	
(66)m=	121.91	121.91	121.9	1	121.91	121.91	1	21.91	121.91	121	_	121.91	121.9	1 121.9	91 1	21.91		(66)
Lightin	g gains	(calcula	ted in <i>i</i>	Ц Арі	pendix l	L, equa	tior	1 L9 oi	r L9a), a	lso s	ee -	Table 5			-		I	
(67)m=	20.31	18.04	14.67		11.1	8.3	_	7.01	7.57	9.8	_	13.21	16.7	7 19.5	8 2	20.87		(67)
Appliar	nces gai	ins (calc	ulated	in	Append	dix L, e	gua	tion L	13 or L1	3a),	also	see Tal	ole 5				I	
(68)m=	216.74	218.99	213.33	_	201.26	186.03	·	71.71	162.15	159	_	165.57	177.6	4 192.8	37 2	207.18		(68)
		(calcula	ted in	 An	pendix	l equa	 atio	n I 15	or I 15a\	L) als	0 SE	ee Table	5				ı	
(69)m=	35.19	35.19	35.19	÷	35.19	35.19	_	35.19	35.19	35.	_	35.19	35.1	9 35.1	9 (35.19		(69)
	and far	ns gains	(Table		 a)					<u> </u>					!_		ı	
(70)m=	3	3	3	T	3	3	Т	3	3	3	3	3	3	3	Т	3	I	(70)
	e a ev	aporatio	n (nec	L ati	ve valu	es) (Ta	L ble	5)		<u> </u>							ł	
(71)m=	-97.53	-97.53	-97.53	_	-97.53	-97.53	_	97.53	-97.53	-97	.53	-97.53	-97.5	3 -97.5	53 -	97.53		(71)
		gains (T	!						ļ	<u> </u>				!			ł	
i		115.12		-	104.7	100.8	T	95.31	90.64	96.	62	98.74	104.9	06 1111.9	98 1	15.13		(72)
		gains =										+ (69)m + (_			ı	, ,
(73)m=		414.72	401.2	7 T	379.63	357.7	T :	336.6	322.93	328	_	340.1	361.9	<u> </u>	`	105.75	l	(73)
	ar gains						<u> </u>											
			using so	lar	flux from	Table 6a	and	d associ	iated equa	tions	to co	nvert to th	e appli	cable orie	ntation	١.		
Orienta	ation: A	Access F	actor		Area			Flu	Х			g_		FF			Gains	
	7	able 6d			m²			Tal	ole 6a		Т	able 6b		Table 6	SC .		(W)	
South	0.9x	0.77		x	12.	15	X	4	6.75	x		0.63	X	0.	7	_ =	173.6	(78)
South	0.9x	0.77		x	12.	15	X	7	6.57	x		0.63	X	0.	7	╡ =	284.31	(78)
South	0.9x	0.77		x	12.	15	X	9	7.53	X		0.63	X	0.	7	╡ -	362.16] (78)
South	0.9x	0.77		x	12.	15	X	1	10.23	X		0.63	X	0.	7	╡ =	409.32	(78)
South	0.9x	0.77	\equiv	X	12.		X	_	14.87	X		0.63	×	0.		╡ =	426.54] (78)
South	0.9x	0.77	=	X	12.		x	_	10.55) X		0.63	x	0.		╡ =	410.49] (78)
South	0.9x	0.77	==	X	12.		x	_	08.01) x		0.63	x	0.		╡ =	401.07](78)
South	0.9x	0.77	=	X	12.		x	_	04.89	X		0.63	X	0.		╡ _	389.49	(78)
		0.11		•	L	. •		<u> </u>		J	Щ	0.00	_ ^		•		300.40	」 ` ⁻′

South	0.9x	0.77	X	12.	15	x	10	01.89	x		0.63	х	0.7	=	378.32	(78)
South	0.9x	0.77	x	12.	15	X	8	2.59	x		0.63	_ x _	0.7		306.66	(78)
South	0.9x	0.77	X	12.	15	x	5	5.42	х		0.63	x	0.7	=	205.77	(78)
South	0.9x	0.77	x	12.	15	x		40.4	x		0.63	_ x _	0.7	=	150.01	(78)
	L															_
Solar o	ains in	watts, ca	alculated	for eac	h month				(83)m	า = Sเ	um(74)m .	(82)m				
(83)m=	173.6	284.31	362.16	409.32	426.54	1	10.49	401.07	389	.49	378.32	306.66	205.77	150.01		(83)
Total g	jains – i	nternal a	nd sola	(84)m =	= (73)m	+ (8	33)m	, watts	•				!	!		
(84)m=	590.47	699.03	763.43	788.96	784.24	74	47.09	724	718	.43	718.42	668.6	592.77	555.76		(84)
7 Me	an inter	nal temp	perature	(heating	season)							,			
		during h		`		'	area f	from Tal	ole 9	Th	1 (°C)				21	(85)
-		tor for g	•			_			J.O 0,	,	. ()				21	
Otilloc	Jan	Feb	Mar	Apr	May	È	Jun	Jul	Δ	ug	Sep	Oct	Nov	Dec		
(86)m=	0.99	0.98	0.96	0.91	0.8	\vdash	0.62	0.45	0.4	 	0.68	0.91	0.98	1		(86)
		<u> </u>	<u>l</u>									0.01	0.00	<u> </u>		()
		l temper				_							T	I	Ī	(07)
(87)m=	20.13	20.31	20.53	20.76	20.91	2	0.99	21	2	1	20.97	20.79	20.42	20.1		(87)
Temp	erature	during h	eating p	eriods ir	rest of	dw	elling	from Ta	able 9	9, Tr	n2 (°C)			_	-	
(88)m=	20.1	20.1	20.1	20.12	20.12	2	0.14	20.14	20.	14	20.13	20.12	20.12	20.11		(88)
Utilisa	ation fac	tor for g	ains for	rest of d	welling,	h2,	m (se	e Table	9a)							
(89)m=	0.99	0.98	0.95	0.88	0.75	$\overline{}$	0.54	0.36	0.3	38	0.61	0.88	0.98	0.99		(89)
Mean	interna	l temper	ature in	the rest	of dwell	ina	T2 (f	allow ste	ne 3	to 7	7 in Tahl	<u> </u>	!	!	•	
(90)m=	18.94	19.21	19.52	19.85	20.04	Ť	0.13	20.14	20.		20.11	19.89	19.38	18.91		(90)
()						_				!			g area ÷ (4		0.47	(91)
														•	0.17	
		l temper				_						00.04	1007	10.47	1	(92)
(92)m=	19.5	19.73	19.99	20.27	20.45		0.53	20.54	20.		20.51	20.31	19.87	19.47		(92)
(93)m=	19.5	nent to t	ne mear 19.99	20.27	20.45	_	0.53	m Table 20.54	20.		20.51	20.31	19.87	19.47]	(93)
					20.45		0.55	20.54	20.	34	20.51	20.31	19.67	19.47		(33)
		iting requ mean int			ro obtair	nod	at eta	on 11 of	Tabl	o Oh	so tha	t Ti m-(76)m an	d ro-calc	sulato	
		factor fo		•		icu	at sit	эр ттог	Tabi	e st), 30 tila		r Ojiii aii	u re-carc	Julate	
	Jan	Feb	Mar	Apr	May		Jun	Jul	A	ug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm):		•							•	•		
(94)m=	0.99	0.98	0.95	0.89	0.77	(0.57	0.4	0.4	12	0.64	0.89	0.98	0.99		(94)
Usefu	ıl gains,	hmGm	, W = (9	4)m x (8	4)m				•							
(95)m=	584.69	682.27	723.81	699.59	603.21	42	29.55	289.77	303	.27	461.36	594.06	578.92	551.69		(95)
Month	nly aver	age exte	rnal tem	perature	from T	abl	e 8								•	
(96)m=	4.3	4.9	6.5	8.9	11.7	Ľ	14.6	16.6	16.	.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	e for mea			erature,	Lm	, W =	=[(39)m	x [(93	3)m-	– (96)m]			•	
(97)m=	1179.53	1146.01	1038.31	857.48	657.05	43	37.26	290.54	304	.33	476.42	729.43	966.49	1165.17		(97)
Space		g require	ement fo	r each n	nonth, k	Wh	/mont	h = 0.02	24 x [(97)	m – (95)m] x (4	1)m		1	
(98)m=	442.56	311.63	233.99	113.68	40.06		0	0	0)	0	100.71	279.05	456.43		_
										Total	per year	(kWh/yea	r) = Sum(9	8) _{15,912} =	1978.12	(98)
Space	e heatin	g require	ement in	kWh/m²	² /year										25.13	(99)
		•													ı	_

9a. Energy requirements – Individ	dual heating sy	/stems ir	ncludina	micro-C	HP)					
Space heating:	add Hodding O		rordanig	1111010 0	, ,					_
Fraction of space heat from second	ondary/supple	mentary	system						0	(201)
Fraction of space heat from main	n system(s)			(202) = 1 -	- (201) =				1	(202)
Fraction of total heating from ma	ain system 1			(204) = (20	02) x [1 –	(203)] =			1	(204)
Efficiency of main space heating	system 1								93.5	(206)
Efficiency of secondary/supplem	entary heating	g system	, %						0	(208)
Jan Feb Mar	Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ar
Space heating requirement (calc	 	1	_		_	T	l		1	
	13.68 40.06	0	0	0	0	100.71	279.05	456.43		
$(211)m = \{[(98)m \times (204)] \} \times 100$	` ' ' 	0	0	0	0	407.74	200 45	400.40	1	(211)
473.33 333.3 250.26 12	21.58 42.85	0	0	0 Tota	0 L(kWh/vea	107.71 er) =Sum(2	298.45 211) _{15.1012}	488.16	2115.63	(211)
Space heating fuel (secondary),	k\M/h/month			1014	. (m	ar) =0am(2	- ' '/15,1012		2115.65	(211)
$= \{[(98) \text{m x } (201)] \} \text{ x } 100 \div (208)$	KVVII/IIIOIIIII									
(215)m= 0 0 0	0 0	0	0	0	0	0	0	0		
				Tota	l (kWh/yea	ar) =Sum(2	215) _{15,1012}	F	0	(215)
Water heating										
Output from water heater (calcula	ated above) 63.31 160.03	142.98	137.3	150.68	150.42	169.35	179.08	192.1		
Efficiency of water heater	03.31 100.03	142.30	107.0	130.00	130.42	109.55	179.00	192.1	79.8	(216)
	33.87 81.73	79.8	79.8	79.8	79.8	83.48	85.99	87.04	. 0.0	(217)
Fuel for water heating, kWh/mont	! :h	ļ.								
$(219)m = (64)m \times 100 \div (217)m$		470.47	470.00	100.00	100.5	000 00		200.7	Ī	
(219)m= 226.49 200.9 213.14 19	94.72 195.79	179.17	172.06	188.82 Tota	188.5 I = Sum(2	202.86 19a) =	208.26	220.7	2391.4	(219)
Annual totals					. ••••••		Wh/year	•	kWh/yea	
Space heating fuel used, main sy	stem 1								2115.63	
Water heating fuel used									2391.4	
Electricity for pumps, fans and ele	ectric keep-hot	t								
central heating pump:	'							30		(230c
boiler with a fan-assisted flue										(230e
	U- /			oum.	of (220a)	(230g) =		45		_
Total electricity for the above, kW	n/year			Sum	UI (230a).	(230g) =			75	(231)
Electricity for lighting									358.61	(232)
12a. CO2 emissions – Individual	I heating syste	ems inclu	ıding mi	cro-CHP						
			ergy h/year			Emiss kg CO	ion fac 2/kWh	tor	Emissions kg CO2/ye	
Space heating (main system 1)		(211) x			0.2	16	=	456.98	(261)
Space heating (secondary)		(215	i) x			0.5		=	0	(263)
Water heating) x			0.2		=	516.54	(264)
Space and water heating				+ (263) + (264) =	<u> </u>	10			
opace and water nealing		(201	, , (202)	· (200) + (973.52	(265)

Electricity for pumps, fans and electric keep-hot (231) x 0.519 = 38.93 (267) Electricity for lighting (232) x 0.519 = 186.12 (268) Total CO2, kg/year sum of (265)...(271) = 1198.56 (272)

TER =

(273)

15.23

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 07 October 2020

Property Details: Unit 7 - COPPETTS WOOD, London

Dwelling type:FlatLocated in:EnglandRegion:Thames valley

Cross ventilation possible:YesNumber of storeys:1Front of dwelling faces:North

Overshading: Average or unknown

Overhangs: None

Thermal mass parameter: Indicative Value Low

Night ventilation: False

Blinds, curtains, shutters:

Ventilation rate during hot weather (ach):4 (Windows open half the time)

Overheating Details:

Summer ventilation heat loss coefficient: 276.4 (P1)

Transmission heat loss coefficient: 39

Summer heat loss coefficient: 315.38 (P2)

Overhangs:

Orientation: Ratio: Z_overhangs:

South (Rear Windows) 0 1

Solar shading:

Orientation: Z blinds: Solar access: Overhangs: Z summer:

South (Rear Windows) 1 0.9 1 0.9 (P8)

Solar gains:

Orientation FF Area Flux Shading Gains g_{-} 0.9 486.99 South (Rear Windows) 0.9 x 12.15 112.21 0.63 0.7 **Total** 486.99 (P3/P4)

Internal gains:

June July **August** 479.28 470.05 Internal gains 461.75 984.08 948.74 (P5) Total summer gains 950.53 Summer gain/loss ratio 3.12 3.01 3.01 (P6) Mean summer external temperature (Thames valley) 16 17.9 17.8 Thermal mass temperature increment 1.3 1.3 1.3 (P7) Threshold temperature 20.42 22.21 22.11 Likelihood of high internal temperature Not significant Medium Medium

Assessment of likelihood of high internal temperature: Medium